Наука воскрешения видов — страница 10 из 45

Наконец, мы сталкиваемся с так называемой контаминацией. В наиболее широком смысле под контаминацией имеется в виду любая ДНК, извлеченная из кости или другой ткани и не принадлежащая организму, геном которого мы пытаемся секвенировать. Это может быть ДНК микроорганизмов, поселившихся в этой кости после того, как она была погребена в земле, или растений, корни которых росли рядом с этой костью. Это также может быть ДНК, попавшая в кость во время ее извлечения из земли или пребывания в лаборатории. Одна кость может содержать огромное количество хорошо сохранившейся ДНК, лишь малая часть которой будет представлять для нас интерес.

Профессор Сванте Паабо руководит исследовательской группой в Институте эволюционной антропологии Общества Макса Планка, расположенном в немецком городе Лейпциге, и не так давно его группа секвенировала и собрала геном неандертальца. Группу Паабо очень интересует вопрос, что же это значит – быть человеком. Один из способов приблизиться к ответу – сравнить геном человека с геномами наших ближайших родственников, человекообразных обезьян, и выяснить, как изменилась наша геномная последовательность с тех пор, как мы разошлись с другими человекообразными обезьянами. Наш ближайший живущий ныне родственник – это шимпанзе. Геномы человека и шимпанзе совпадают на 98–99 %, следовательно, отличия человека от шимпанзе должны быть обусловлены оставшимися 2 % генов. Но 2 % из 3,2 миллиарда пар оснований – это все еще слишком большая часть ДНК, чтобы разобраться. Неандертальцы состоят в намного более близком родстве с людьми, чем шимпанзе. Секвенировав геном неандертальца, Паабо может более детально разобраться в генетических особенностях нашего вида.

Первый полный геном неандертальца, опубликованный группой Паабо, представлял собой объединенные данные ДНК, секвенированной из трех различных костей неандертальца. Менее 5 % ДНК, обнаруженной в каждой кости, принадлежало неандертальцу, остальные 95 % приходились в основном на ДНК, попавшую из окружающей среды, – ДНК бактерий почвы и болезнетворных организмов, растений и т. д. Средняя длина фрагмента секвенированной ДНК неандертальца, извлеченной из этих костей, составляла 47 пар оснований. Человеческий геном содержит 3,2 миллиарда пар оснований, так что это похоже на сборку пазла, состоящего из 68 миллионов кусочков. Разумеется, вследствие разрушения и контаминации у исследователей было намного больше кусочков, чем нужно, при этом некоторые из них относились к тому же пазлу, но иначе разрезанному, а некоторые вообще к другому.

Чтобы облегчить сборку, группа Паабо использовала в качестве шаблона человеческий геном, уже секвенированный и собранный. Продолжая аналогию с пазлом, если фрагменты ДНК неандертальца, состоящие из 47 пар оснований, – это кусочки головоломки, то человеческий геном – картинка на крышке коробки. Вот только картинка и пазл различались (потому что это был геном человека, а не неандертальца). Совсем немного, как если бы картинка имела другой цвет или часть ее была скрыта надписью «Содержит мелкие детали».

Сборка генома неандертальца оказалась непростой задачей. Но все же менее сложной, чем будущая сборка многих других древних геномов. Во-первых, на сегодня код человеческой ДНК расшифрован лучше, чем код ДНК любого другого вида, так что картинка на крышке коробки пазла была практически полной. Количество и разнообразие секвенированных геномов продолжает расти, однако для большинства видов они все еще секвенированы и собраны лишь отчасти. Во-вторых, люди и неандертальцы имели общего предка, жившего в пределах последнего миллиона лет, возможно, даже около половины миллиона лет назад. Это означает, что между людьми и неандертальцами не успело накопиться слишком много различий. Картинка на крышке коробки довольно точно отражает то, как должен выглядеть законченный пазл.

Но для многих других видов это не так. На самом деле чем больше времени прошло от точки эволюционного расхождения вымершего вида с живущими видами, геномы которых можно использовать в качестве образца, тем сложнее будет сборка генома такого вида. На каком-то этапе образец на крышке коробки с пазлом уже будет не просто слегка отличаться по цвету, а будет больше напоминать картинку, которую вы спасли из пасти собаки, а потом попробовали склеить с помощью скотча и капельки воображения. А при еще большем отдалении – на картинку, которую растоптало стадо мамонтов, убегающих от стаи пещерных львов. Под дождем.

Если у нас нет останков вида, содержащих ДНК, которую можно будет восстановить, – такой вид плохо подходит для возрождения. Если у нас есть останки, содержащие такую ДНК, но вид не имеет близких родственников, сборка генома из этой ДНК будет сложной, возможно, даже очень сложной. Важно, однако, что даже если сохранившаяся ДНК находится в ужасном состоянии, в целом возможно собрать если не целую последовательность, то хотя бы ее длинные участки.

Как превратить полученную геномную последовательность в живой организм?

Если мы дошли до этапа, на котором оцениваем возможность создания живого организма, значит, предположительно, нам удалось собрать его геномную последовательность (или ее часть), пусть это и было тяжело. Теперь нам нужно превратить эту вереницу букв в живой организм. Но как?

Не существует единого для всех организмов пути от генома к живому существу. Некоторые геномы, в частности, бактерий или вирусов, обычно не нужно сильно подталкивать к тому, чтобы они начали вести себя как живые. Другие же геномы и близко не стоят к превращению в живое существо.

Обдумывая возрождение вымершего вида, мы обычно рассматриваем два возможных пути. Первый относится к тому, что имеет в виду большинство людей, говоря о клонировании. Чтобы клонировать овцу Долли в 1996 году, ученые из Рослинского института, подразделения Эдинбургского университета в Шотландии, взяли у взрослой овцы небольшой образец ткани молочной железы, содержащей живые клетки, и использовали ДНК этих клеток для создания точной копии животного. Этот процесс называется соматическим ядерным переносом, или просто ядерным переносом. Позже я объясню, как он работает, но пока достаточно знать, что использование этой технологии для возвращения к жизни большого числа вымерших видов маловероятно. К сожалению, для клонирования путем ядерного переноса нужно иметь неповрежденные клетки. Если образец ткани не был взят у живого представителя вида до того, как этот вид вымер, ядерный перенос не сработает. Если мы имеем дело с видом, геном которого нам придется секвенировать и собирать заново, нам понадобится другой подход.

Другой способ создания живого организма пугающим образом напоминает фильм «Парк юрского периода». Как и должно, по всей вероятности, происходить в реальных проектах по возрождению вымерших видов, ученые из «Парка юрского периода» смогли восстановить лишь участки генома динозавров – в фильме они выделили их из крови, обнаруженной в останках застывших в янтаре комаров. Недостающие участки генома динозавра ученые восполнили с помощью ДНК лягушки. К сожалению, они не могли заранее знать, какие участки ДНК важны для того, чтобы животное выглядело и вело себя как динозавр, а какие – просто мусор. Мы можем только предположить, будто эти выдуманные ученые надеялись, что промежутки, заполненные чужеродной ДНК, в основном относятся к незначимым участкам генома. Но, разумеется, они ошиблись, и какой-то фрагмент лягушачьей ДНК позволил восстановленным динозаврам чудесным образом изменять пол, что привело к катастрофе и 400 миллионам долларов кассовых сборов.

Настоящие ученые, занимающиеся возрождением вымерших видов, пытаются узнать, какие участки генома отвечали за то, чтобы представители вымершего вида выглядели и вели себя именно так, как они это делали. В этом случае мы сможем найти соответствующие ключевые участки в геноме их близкого живого родственника, убрать их и поставить на их место участки генома вымершего животного.

Разумеется, на словах все это выглядит намного проще, чем в жизни.

Предположим, мы собираемся возродить мамонта и для этого хотим отредактировать слоновий геном таким образом, чтобы он больше походил на мамонтовый. Для начала нам придется определить все различия между геномами мамонта и слона. Затем, поскольку может оказаться слишком сложным внести все изменения сразу (по меньшей мере, в первых экспериментах), нужно будет определить более узкий круг необходимых поправок, решив, какие различия важны. К примеру, мы выясним, что у мамонтов и слонов отличается ген UCP1, кодирующий разобщающий белок в митохондриях клеток бурой жировой ткани. Эксперименты на мышах показали, что белок UCP1 участвует в терморегуляции. Поскольку мамонты, в отличие от слонов, жили в очень холодной местности, мы можем предположить, что мамонтовая версия этого гена помогала им согреваться. Наша цель состоит в том, чтобы превратить слона в животное, способное выжить в холодном климате, и преобразование слоновьей версии этого гена в мамонтовую должно помочь нам достичь цели. Итак, мы создаем молекулярный инструмент, который сможет проникнуть в клетку слона, обнаружить участок генома, соответствующий гену UCP1, и отредактировать его таким образом, чтобы он стал похож на мамонтовую версию.

Все, что нам нужно для создания полного генома мамонта, – это повторить описанный шаг для каждого значимого различия между мамонтом и слоном.

Далее мы берем клетку с отредактированным геномом и вводим его в яйцеклетку, из которой предварительно удалили ядро. Эта клетка начинает делиться и превращается в эмбрион, – все как при уже знакомом нам процессе клонирования путем ядерного переноса. Затем мы имплантируем этот эмбрион в матку суррогатной матери, где он продолжает развиваться, и, наконец, на свет рождается детеныш.

Может показаться, что последний этап, на котором представитель одного вида развивается в матке представителя другого вида, не вызовет особых затруднений. Однако этот шаг тоже следует хорошо продумать. Представим себе проект по возрождению стеллеровой коровы. Ближайший живущий родственник стеллеровой коровы и, следовательно, наиболее вероятный кандидат в ее суррогатные матери – дюгонь, период беременности у него составляет 13–14 месяцев, после чего на свет рождается единственный детеныш. Новорождённые дюгони весят около 30 килограммов и в длину достигают чуть более метра – около ⅓—½ длины взрослой особи. Если соотношение размеров новорождённой и взрослой особи у стеллеровой коровы такое же, то новорождённый детеныш будет достигать 3–6 метров в длину. Это больше, чем длина тела его суррогатной матери.