Важно разъяснить, что я имею в виду под «полезной» ДНК. Не бывает так, что вчера ДНК представляла собой хорошо сохранившуюся информативную молекулу, а сегодня, по истечении срока годности, рассыпалась в прах. Процесс распада ДНК включает как накопление химических повреждений, так и постепенное разрушение длинных цепочек с образованием все более мелких фрагментов. Когда длина фрагментов уменьшается до менее чем 25–30 пар оснований, мы уже не можем определить, к какому именно участку генома они относятся, и, следовательно, для генетических исследований они становятся бесполезны. Фрагменты ДНК длиной в одно-два спаренных основания могут существовать в течение очень длительного времени даже в крайне неблагоприятной для их выживания среде, однако выделение таких участков никак не поможет нам в сборке по кусочкам генома вымершего животного.
Недавно я участвовала в большой международной коллаборации, занимавшейся секвенированием полного генома древней лошади – такой же лошади, как те, что участвуют в «Кентукки Дерби» в наши дни, но только очень старой. Кость, которую мы использовали, была извлечена из вечной мерзлоты в канадской Арктике. Обнаружив эту кость, мы поняли, что она старая, – очень, очень старая, – и это сильно нас взволновало.
При исследовании древней ДНК критически важно знать возраст обнаруженных костей. Зная, насколько стара каждая кость, можно понять, как изменения размеров популяций и генетического разнообразия связаны с изменениями в окружающей среде. К примеру, лошади вымерли в Северной Америке около 12 тысяч лет назад. Как я уже упоминала в главе 1, существуют две конкурирующие гипотезы, объясняющие вымирание лошадей. Одна предполагает, что на пике последней ледниковой эпохи, около 20 тысяч лет назад, лошадям не хватало пропитания, другая – что их истребили люди, появившиеся в Северной Америке около 14 тысяч лет назад. Знать, что лошади вымерли 12 тысяч лет назад, и знать, почему они вымерли, – это не одно и то же. Чтобы подтвердить одну из двух гипотез, нам нужно выяснить, когда начали сокращаться популяции лошадей. А для этого мы должны установить возраст каждой кости.
Существует несколько способов узнать возраст кости, окаменелости или археологического артефакта. В некоторых условиях, например в пещерах или в местах археологических раскопок, они могут находиться в четко определенных слоях или пластах, где также обнаруживаются другие объекты, возраст которых известен. Это могут быть скопления окаменелостей, обнаруживаемые вместе только в слоях, относящихся к тому или иному временному интервалу, или доисторические орудия труда, использовавшиеся только в один определенный период. К сожалению, в вечной мерзлоте, где обнаруживается большинство интересующих нас лошадиных костей, такие слои встречаются не часто.
Возраст большинства костей, сохранившихся в вечной мерзлоте, определяется с помощью процесса, называемого радиоуглеродным датированием. В основе этого метода лежит определение относительного содержания в останках живого организма двух изотопов углерода – углерода-14 и углерода-12. Эти данные позволяют понять, сколько времени прошло с момента смерти организма. Углерод-14 представляет собой радиоактивный изотоп углерода, образующийся в атмосфере, когда космические лучи сталкиваются с атомами азота. Углерод-12 – это нормальный изотоп углерода. Углерод обоих видов соединяется с кислородом, образуя диоксид углерода, поглощаемый растениями в процессе фотосинтеза. Животные затем поедают эти растения, и содержащийся в растениях углерод проникает в их кости. В любой момент времени соотношение двух видов углерода в атмосфере и внутри организмов, живущих в этой атмосфере, одинаково. Углерод-14 радиоактивен и распадается с известной скоростью, его период полураспада составляет 5700 лет. Поскольку после смерти живые организмы прекращают потреблять углерод, мы можем рассчитать, как давно организм умер, исходя из количества углерода-14, сохранившегося в его останках.
Радиоуглеродное датирование – это эффективный и отличающийся приятной точностью способ оценки возраста костей, обнаруженных в вечной мерзлоте. Но количество углерода-14 в атмосфере очень мало по сравнению с количеством углерода-12 – приблизительно один атом из триллиона, – а период его полураспада очень недолог. Примерно спустя 40 тысяч лет в организме остается слишком мало углерода-14, чтобы его количество можно было измерить точно. Следовательно, радиоуглеродное датирование можно использовать только в течение этого очень короткого промежутка времени.
К счастью, существует другой способ оценить возраст костей, обнаруженных в вечной мерзлоте. При извержении вулканов в атмосферу широким веером выбрасывается облако очень мелкой пыли, часто называемой вулканическим пеплом, или тефрой. Тефра, образующаяся при каждом извержении, имеет уникальный геохимический состав. Как оказалось, геохимики разработали несколько способов определить, когда произошли эти извержения. Эти методы основаны на том, что воздействие высокой температуры «обнуляет» возраст минералов. Следовательно, измерив определенные характеристики минералов, можно узнать, когда произошло извержение вулкана.
Залежи вулканической тефры располагаются на просторах Аляски и Юкона, отмечая извержения, которые происходили на территории, на западе доходящей до Алеутских островов и полуострова Аляска. Когда пепел оседает на землю, вечная мерзлота как будто покрывается белым одеялом. Со временем над слоем вулканического пепла образуются осадочные породы вечной мерзлоты, и теперь он четко отделяет окаменелости, погребенные до извержения вулкана (находящиеся под слоем тефры), от тех, которые появились там после извержения (расположенные над слоем тефры). Этот метод не так точен, как радиоуглеродный анализ, но он позволяет приблизительно определить возраст костей, слишком старых для датирования с использованием радиоактивного углерода. Именно этот метод мы использовали для оценки возраста нашей древней лошадиной кости.
«Слишком старый» – это сколько?
Мое излюбленное место для полевых работ – это Клондайк, золотоносный район, расположенный сразу за городом Доусон на территории Юкон, Канада. Оказывается, добыча золота – это буквально золотая жила для палеонтологии ледникового периода. Большинство золотодобытчиков на Клондайке используют процесс, называемый разработкой россыпей (ил. 6). Вода, образующаяся при весеннем таянии снегов, собирается в пруды-накопители. После того как все участки вечной мерзлоты, открытые солнцу, растают, воду закачивают насосом в место добычи золота и выливают под давлением на растаявшую грязь. При этом вода смывает всё, кроме сплошных кусков льда. Затем добыча ненадолго прекращается, пока солнце не растопит следующий слой замерзшей грязи. Затем растаявшая грязь вновь смывается водой. Этот процесс повторяется, пока вечная мерзлота не исчезнет, оставляя под собой только золотоносную россыпь.
К большому удивлению старателей, само золото нас не особенно волнует. Но зато нас очень интересуют тысячи костей, извлеченных из земли в процессе смывания слоя вечной мерзлоты (ил. 7–9). Около 80 % таких костей, найденных на Клондайке, принадлежат степным бизонам, около 10 % – лошадям, а остальные – в основном мамонтам, медведям, львам, американским северным оленям, волкам и овцебыкам. Крайне важно, что разработка россыпи проводится медленно и методично, а это означает, что многие из этих костей можно извлечь еще замороженными. Такие кости сохранились идеально.
Мы обнаружили по-настоящему старую лошадиную кость в золотом руднике поблизости от Тисл-Крик. Это место выделялось даже среди золотоносных россыпей Клондайка. Несколькими годами ранее группа геологов под руководством Дуэйна Фрёзе из Альбертского университета обнаружила, что вечная мерзлота в районе Тисл-Крик была очень старой. Мало того, это был самый древний участок вечной мерзлоты из когда-либо обнаруженных. Они узнали об этом, потому что обнаружили там вулканический слой, называемый тефрой «Голд Ран». Эта тефра осела на землю в центральной части Юкона около 700 тысяч лет назад. Итак, мы узнали, что лошадиные кости находились в слое вечной мерзлоты возрастом в 700 тысяч лет, и нам не терпелось выяснить, содержат ли они хоть немного лошадиной ДНК.
Дуэйн обнаружил семь костей, каждая из которых была крупнее, чем кости современных домашних лошадей, в слое вечной мерзлоты, прилежащем слою тефры «Голд Ран». Он проследил, чтобы во время транспортировки с места обнаружения в хранилище кости все время находились в замороженном состоянии. Мы взяли два образца костной ткани от двух из этих лошадиных костей и, к своему удивлению и восторгу, смогли выделить ДНК из обоих. Повторюсь: мы смогли выделить аутентичную ДНК древней лошади из двух костей возрастом в 700 тысяч лет.
Эти фрагменты представляют собой самые древние цепочки ДНК, когда-либо полученные из образцов, возраст которых установлен достаточно точно. Но экстраординарные заявления требуют таких же экстраординарных подтверждений. Настоящие ли результаты мы получили? Думаем, что да. Мы в высшей степени тщательно следили за тем, чтобы образцы хранились в замороженном состоянии и вдали от других образцов или других источников контаминантной ДНК. Фрагменты, которые мы выделили из этих костей, были короткими и очень сильно поврежденными, чего и следует ожидать при работе с древней ДНК. Данные анализа указывают на то, что эти лошади эволюционно были намного древнее тех, которые живут сейчас. К тому же результаты удалось повторить. Мы выделили ДНК этих лошадей в моих лабораториях в Оксфорде и в Университете штата Пенсильвания, а мой коллега Людовик Орландо и его группа в Копенгагенском университете смогли выделить ДНК одной из костей несколько раз. Результаты всех этих экспериментов согласовывались друг с другом как в том, что касалось собственно восстановления последовательностей ДНК, так и в отношении характера повреждений в этих цепочках. В совокупности эти наблюдения подтверждают аутентичность найденной сверхдревней лошадиной ДНК.