Если создать слоненка из соматических клеток, отредактированных воскресителями мамонта, этот слоненок будет иметь лишь очень небольшую долю ДНК мамонта. Цель воскресителей мамонта состоит в том, чтобы путем редактирования генома создать слона, который сможет лучше переносить холод. Представим, что они добились этого, заменив от 5 до 10 слоновьих генов их мамонтовыми версиями. В таком случае фенотип воображаемого слоненка изменится (хотелось бы надеяться на это), однако более 99,99 % его ДНК все еще будет слоновьей.
В придуманной ситуации, описанной в статье 1984 года, новорождённые слонята были гибридами первого поколения, образовавшимися путем слияния ДНК, сохранившейся в яйцеклетке мамонта, и ДНК сперматозоида слона. Пятьдесят процентов ДНК гибридных животных принадлежало слону, а другие пятьдесят – мамонту, но Бен-Аарон не зашла так далеко, чтобы назвать их мамонтами. На самом деле приведенное в статье наименование Elaphas pseudotherias – помещает гибридного мамонтослона в один род с индийским слоном, однако включает полностью новое, выдуманное название вида. Возможно, она подходила к своему творению с научной точностью. Не исключено, что это было сделано для того, чтобы избежать недоразумений. Какой бы ни была ее мотивация, эта статья дала нам отличную возможность понаблюдать реакцию публики на создание гибридного вида (пусть и выдуманное).
Публике не было дела до того, что речь идет о гибриде. Пресса называла это животное мамонтом, значит, это был мамонт. Возможно, сильнее всего повлияло описание животного, но и оно в сообщениях прессы было предельно кратким: гибрид обладал светло-коричневой шерстью и челюстями, как у мамонта. Очевидно, даже небольшого сходства для людей оказалось вполне достаточно. Перед ними был мамонт.
Это отличная новость для сторонников возрождения вымерших видов, потому что она создает огромное пространство для маневра в определении успешности эксперимента. Мамонту не обязательно быть полноценным мамонтом, чтобы его воспринимали таковым. Это дарит некоторое облегчение. Хотя, как уже говорилось, о создании стопроцентного мамонта не может быть и речи, об однопроцентном того же сказать нельзя.
Это позволяет нам заново определить понятие восстановления вымерших животных, сместив фокус с непосредственно видов. С большой вероятностью создание генетически чистого мамонта или представителя какого-либо другого вымершего вида невозможно. Однако для того, чтобы получить пользу от технологии, нам и не требуется генетическая чистота. Если мы разумно подойдем к выбору того 1 % генома, который собираемся изменить, у нас может получиться возродить признаки, отличающие мамонта от слона. Еще важнее то, что у нас может получиться восстановить те черты, которые позволяют слону жить в местах, где когда-то жил мамонт. После того как этот гибридный слон попадет в дикую природу, он начнет бродить по округе, топтать кустарники и поедать растительность в огромных количествах. Он поспособствует распространению семян растений, насекомых, а также распределению питательных веществ. Новое гибридное животное сможет воспроизвести все действия мамонта, не будучи при этом мамонтом, и в перспективе это благотворно повлияет на экосистему Арктики.
Большинство людей, всерьез рассматривающих возможность возрождения вымерших видов или искусственного одичания, уверены, что возвращение этих видов поможет в нашей текущей борьбе за сохранение биологического разнообразия и поддержание здоровья экосистем. Вымирание животных на любом уровне – будь то хищники или их добыча, животные, распространяющие семена растений или поедающие кустарники и деревья, – может оказать каскадный эффект на всю экосистему.
Проект по искусственному одичанию тура в континентальной Европе направлен на создание гигантских травоядных, которые будут пастись на широких диких просторах, не позволяя разрастаться кустарникам и деревьям. Ученые надеются, что в результате будет восстановлена природная среда, которую смогут использовать крупные и мелкие хищники, а также увеличится разнообразие растительных видов. Тур – это целевой фенотип их экспериментов по искусственному одичанию. Однако цель ученых – не вернуть к жизни тура, а воссоздать фенотип, который будет воздействовать на окружающую среду так же, как это делал тур. Они рассчитывают заменить тура животным, аналогичным в функциональном отношении, но не обязательно идентичным по форме.
На мой взгляд, истинная ценность восстановления вымерших животных заключается именно в экологическом возрождении, а не в возрождении вида. Нам следует думать о восстановлении вымерших видов не с точки зрения того, какую форму жизни мы вернем, а с точки зрения того, какие экологические взаимодействия мы хотели бы восстановить. Нам следует задать себе вопрос: чего не хватает в существующей экосистеме? Возможно, возрождение вымерших видов лучше всего представить как детально разработанный биоинженерный проект, конечный продукт которого моделируется исходя из того, что было создано в процессе эволюции, но, к нашему несчастью, потерялось.
Какие части генома мы должны отредактировать?
Именно редактирование генома, а не клонирование путем ядерного переноса и не искусственное одичание можно считать наиболее вероятным путем возрождения исчезнувших признаков, а также вымерших видов (в зависимости от того, с какой степенью точности мы будем определять понятие вида). Но с чего начать? Вероятно, ответ на этот вопрос будет зависеть от конкретного проекта по возрождению вымершего вида.
Если наша цель – создать слона, который сможет пережить сибирскую зиму, значит, нам нужно изменить это животное, приспособившееся к жизни в тропиках, таким образом, чтобы оно хорошо себя чувствовало при лютом холоде. Более длинная и густая шерсть определенно поможет в этом, равно как и гемоглобин, более эффективно переносящий кислород при низких температурах. Но какие еще признаки нам нужно создать? Существуют ли иные способы повысить эффективность, с которой слон поддерживает температуру своего тела? Существуют ли еще какие-то не учтенные нами потребности в энергии, актуальные для животных, обитающих в Арктике? Существуют ли какие-то адаптации системы пищеварения, необходимые слону для того, чтобы питаться растительностью Сибири? Нужно ли нам воссоздать морфологические изменения, которые позволят слону выкапывать растения из-под снега? Понадобится ли изменить иммунную систему слона таким образом, чтобы он смог защититься от патогенных микроорганизмов, которые не встречаются в тропиках? Все это хорошие вопросы, и мы пока не нашли на них ответов, не говоря уже о том, чтобы определить целевой ген или набор генов, который мы смогли бы секвенировать и проверить на предмет специфических для мамонта изменений, которые мы хотели бы воссоздать.
В ближайшем будущем исследование генома слона вряд ли будет в приоритете в научном мире, а значит, нам не скоро удастся узнать, как расположены все гены, за что они отвечают и как взаимодействуют друг с другом. Но если мы действительно хотим склеить мамонта по кусочкам путем редактирования генома, эта информация будет иметь критическое значение. С учетом того, как много еще остается неизвестным, возможное решение состоит в том, чтобы изменить все нуклеотиды в геноме слона, отличающиеся от генома мамонта. В этом случае у нас будет меньше шансов проглядеть какое-либо существенное различие или взаимодействие генов. Но в этом случае нам понадобится внести множество изменений. Если считать, что расхождение линий мамонта и индийского слона от их общего предка произошло около 4 миллионов лет назад и шло примерно с такой же скоростью, как у других млекопитающих, можно ожидать, что у этих двух видов обнаружится около 70 миллионов генетических отличий (такой же порядок, как в случае человека и шимпанзе). Нам нужно будет отредактировать менее 2 % генома слона, однако 70 миллионов изменений – это очень много.
Как же мы внесем эти изменения? Во-первых, нам нужно выяснить, что именно мы должны изменить. Множество (если не большинство) различий между геномами индийского слона и мамонта, вероятно, можно определить, секвенировав и собрав оба генома, выстроив их друг рядом с другом и просканировав на предмет отличающихся участков. Поскольку мы знаем, что секвенировать и собрать полный геном мамонта нам не удастся, мы уже столкнулись с первой трудностью такого подхода. Проигнорируем эту проблему, и тогда следующим шагом нам нужно будет спланировать изменения каждого специфического участка слоновьего генома с помощью инструментов для редактирования генома. Если считать, что для каждого изменения понадобится своя cгРНК (CRISPR РНК, или cгРНК, – это часть системы CRISPR-Cas9, которая находит участок генома, подлежащий изменению, и связывается с ним), то нам понадобится создать и поместить в клетку 70 миллионов различных cгРНК. Однако ученые в лаборатории Джорджа Чёрча совершенствуют технику введения в клетку все более длинных фрагментов ДНК, что, возможно, позволит заменять множество азотистых оснований за один раз. Предположим, что эту технологию существенно улучшат, и с помощью каждой cгРНК мы сможем делать, в среднем, 10 изменений. Это снизит число нужных нам cгРНК примерно до 7 миллионов.
Работая над гемоглобином мамонта, команда воскресителей из лаборатории Джорджа Чёрча разработала две cгРНК для внесения трех изменений в ген гемоглобина (одна cгРНК вносит одну правку, а вторая – две). Редактирование ДНК слона происходит в три этапа. Во-первых, нужно доставить в клетку все необходимое для редактирования генома – cгРНК, Cas9 (молекулярные ножницы) и участок ДНК мамонта. Во-вторых, cгРНК должны обнаружить участок генома, который нужно вырезать. В-третьих, механизмы клеточной репарации должны вставить на это место мамонтовую версию соответствующего гена.
Поскольку воскресители мамонта осуществили этот эксперимент, с помощью их результатов можно оценивать общую эффективность процесса вырезания и вставки. Другими словами, можно спросить, какова была доля отредактированных клеток слона, в которых успешно произошли все три изменения? Воскресители мамонта обнаружили, что эффективность разных cгРНК в обнаружении нужной части генома (этап «вырезания») отличается, равно как и эффективность механизмов клеточной репарации в починке каждого разрыва нужным нам образом (этап «вставки»). По их оценке, в этом эксперименте эффективность одной из их cгРНК составила 35 %, а второй