оятность успешного клонирования букардо составит 0,1 %.
Альберто Фернандес-Ариас, директор Службы охраны дикой природы и регулирования охоты и рыбной ловли Арагона, пришедший в проект по возрождению букардо в 1989 году, чтобы разработать репродуктивные технологии для пиренейского козерога, считает, что я несправедливо называю этот случай «провалившейся» попыткой возрождения вымершего вида. По словам Фернандеса-Ариаса, если бы группа знала, что букардо родится с аномалией легкого, они смогли бы подготовиться к операции по удалению деформированного фрагмента сразу после рождения. Такие операции успешно проводятся у человеческих младенцев с аналогичными врожденными пороками, и это, вероятно, спасло бы жизнь новорожденному козленку. Разумеется, невозможно выяснить, ни что вызвало аномалию развития легкого, ни что могло случиться далее – как бы сложилась взрослая жизнь клонированной букардо. Однако работа над проектом продолжается, и вскоре мы сможем узнать, вернутся ли букардо на просторы Пиренейских гор.
Если у нас есть клетка, содержащая геном животного, которое мы хотим возродить, – будь то клетка, полученная из замороженных тканей до того, как вид вымер, или клетка, которую подвергнут геномному редактированию, – следующим шагом станет создание эмбриона из этой клетки. И тут нам потребуется животное, которое выступит в роли суррогатной матери. В случае многих кандидатов на возрождение (позже в этой главе я рассмотрю некоторые исключения) этот процесс включает клонирование путем переноса клеточного ядра. Можно догадаться, что одни виды будет значительно проще клонировать, чем другие. К примеру, клонирование букардо должно быть намного проще, чем клонирование отредактированных клеток слона. Поэтому я начну рассматривать этот этап возрождения вымерших видов на примере букардо. Как только мы разберемся с основами, я перейду к более сложным задачам, с которыми придется столкнуться при клонировании клеток слона, подвергнутых генной инженерии. А под конец я расскажу о препятствии в работе над возрождением вымерших видов, которое стало для меня полной неожиданностью: клонирование птиц оказалось невозможным.
Перенос клеточного ядра – это сложный процесс, на каждом этапе которого ученых подстерегает провал. Даже самые простые на первый взгляд шаги могут сопровождаться существенными проблемами. К примеру, в случае собак практически невозможно получить созревшие яйцеклетки, в которые будет произведен перенос генетического материала из соматических клеток. В отличие от яйцеклеток других животных, созревающих в яичниках, яйцеклетки собак созревают по мере продвижения из яичника в матку. Поскольку овуляторный цикл у домашних собак тоже, как правило, непредсказуем, для того, чтобы понять, в какой момент нужно забирать созревшие яйцеклетки, понадобится не только внимательное наблюдение за гормональным фоном животного, но и капля везения.
Однако наиболее тяжелый этап ядерного переноса – перепрограммирование. Во время перепрограммирования клетка забывает, каково это – быть соматической клеткой, и превращается, в сущности, в эмбриональную стволовую клетку. Только полностью перезагруженные клетки позже смогут дифференцироваться в любые из многочисленных тканей, из которых состоит организм. Однако этот этап отличается особенной неэффективностью. Считается, что именно незавершенное перепрограммирование виновато в том, что в результате клонирования путем ядерного переноса развивается столь малое число эмбрионов и у них так часто наблюдаются пороки развития.
Сбой может произойти не только на этапе перепрограммирования. Даже если клетки перепрограммировались должным образом и из них развились жизнеспособные эмбрионы без пороков развития, иногда зародыш не имплантируется в матку суррогатной матери или беременность прерывается уже после имплантации плодного яйца. Это может происходить вследствие пока неизвестных нам особенностей репродуктивного цикла или же из-за какой-либо несовместимости между суррогатной матерью и развивающимся эмбрионом. Подобные несовместимости с большей вероятностью будут встречаться при межвидовом клонировании (включая эксперименты, при которых весь зародыш и его суррогатная мать принадлежат к разным видам), чем при клонировании в пределах одного вида. Кроме того, без сомнений, экспериментальные манипуляции вызывают стресс у суррогатных матерей, и этот стресс может быть одной из причин повышенного процента выкидышей в экспериментах по клонированию.
Разумеется, стресс стал одним из ограничивающих факторов в экспериментах по клонированию букардо.
Готовясь к работе с клетками букардо, группа ученых, проводившая этот проект, сделала первую попытку межвидового клонирования с привлечением другого, сравнительно широко распространенного подвида пиренейского козерога. После того как ученые разработали и полностью протестировали эту технологию, они перешли к клонированию букардо.
Чтобы осуществить план, им были нужны эмбрионы пиренейского козерога. Чтобы создать эти эмбрионы, ученым вначале пришлось поймать в горах несколько пиренейских козерогов. Затем нужно было некоторое время продержать козерогов в неволе, чтобы понаблюдать за их репродуктивным поведением и разработать способ вызвать у самок овуляцию. Увидев, что козероги спариваются, ученые взяли бы у самок оплодотворенные яйцеклетки, имплантировали бы развивающиеся эмбрионы домашним козам, а затем оставалось бы только надеяться на лучшее.
Получить оплодотворенные яйцеклетки пиренейского козерога оказалось намного сложнее, чем рассчитывали исследователи. Привыкшие взбираться по крутым скалистым склонам, пиренейские козероги избегали манипуляций ученых, спасаясь на уступах в стенах вивария высоко под потолком (ил. 15). Когда ученым наконец удалось взять у самок яйцеклетки, оказалось, что среди них нет ни одной оплодотворенной. Похоже, стресс, вызванный жизнью в неволе, помешал им успешно спариться.
Ученым удалось придумать способ работы с козерогами, вызывающий у животных меньше стресса, и, в конечном итоге, удалось добыть оплодотворенные яйцеклетки пиренейских козерогов, содержавшихся в неволе. Но воодушевление, вызванное этим успехом, продлилось недолго, так как обнаружилась еще одна серьезная проблема: ни один из эмбрионов не продолжил развиваться после имплантации в матку домашней козы. Похоже, эмбрионы пиренейских козерогов были несовместимы с матками домашних коз. Это была плохая новость для проекта по клонированию букардо.
Полагая, что причина в генах, ученые решили подобрать другую суррогатную мать, генетически более близкую развивающемуся эмбриону. Лучше всего подошла бы представительница подвида пиренейского козерога. Однако ученые уже знали, что с пиренейскими козерогами трудно работать и они плохо чувствуют себя в неволе. Не желая проводить каждый день в попытках убедить козерогов спуститься вниз со стен, ученые решили пойти на компромисс: создать гибридных особей. Скрестив домашних коз с самцами пиренейского козерога, они получили бы детенышей с 50 % ДНК пиренейского козерога, и, что важнее всего, эти детеныши наверняка предпочли бы держаться поближе к земле. По достижении взрослого возраста гибридные самки должны были стать суррогатными матерями для эмбрионов пиренейского козерога.
Спустя примерно год ученые имплантировали эмбрионы пиренейского козерога самкам – гибридам козы и козерога – и вновь стали надеяться на лучшее. Чудесным образом беременность успешно наступила в половине случаев, и в результате на свет появились здоровые детеныши пиренейского козерога.
Мне следует обратить ваше внимание на то, что такой высокий показатель успешности – пятидесятипроцентная выживаемость имплантированных эмбрионов – обусловлен тем, что в этом эксперименте не был задействован ядерный перенос. В проекте с самого начала использовались здоровые эмбрионы, взятые у живых козерогов, а не соматические клетки, требующие перепрограммирования. Как я уже упоминала ранее, этап перепрограммирования, ставший первым шагом в эксперименте по возрождению букардо, отличается крайне низким процентом успешных исходов.
Разрабатывая технологию искусственного оплодотворения пиренейских козерогов, группа ученых, занимающаяся клонированием букардо, обнаружила, что эмбрионы букардо (в случае, если ученым удастся зайти так далеко в своем эксперименте) смогут развиться в организмах суррогатных матерей – гибридов домашней козы и пиренейского козерога, – но чистокровные домашние козы вряд ли для этого подойдут. Ученые обнаружили преграду для межвидового клонирования, возникшую в ходе эволюционного расхождения этих двух видов.
С точки зрения науки возрождения вымерших видов важно, что вероятность появления подобных преград увеличивается вместе с эволюционной дистанцией. Для вымерших видов, не имеющих близких эволюционных родственников, может не найтись подходящих суррогатных матерей. Однако эксперимент с козерогами показал, что такие преграды могут существовать и между видами, находящимися в близком родстве. Редактирование генома способно даже стать причиной появления таких барьеров, если, к примеру, будут прерваны важные взаимодействия между эмбрионом и вынашивающей его самкой. Таким образом, даже те проекты по возрождению вымерших видов, в которых задействованы минимально отредактированные геномы, могут завершиться неудачей из-за непредвиденной несовместимости эмбриона и его суррогатной матери.
Некоторые виды несовместимости могут проявить себя еще до стадии имплантации. К примеру, если яйцеклетка несовместима с соматической клеткой, ядро которой в нее перенесли, то ни одна такая яйцеклетка не превратится в эмбрион, даже если соматические клетки были правильно и полностью перепрограммированы. Подобная проблема может возникнуть, к примеру, когда ядерный геном соматической клетки несовместим с митохондриальным геномом яйцеклетки.