Неандерталец. В поисках исчезнувших геномов — страница 33 из 60

Рис. 12.3. Отбор проб из неандертальской кости стерильным буром. Фото: MPI-EVA


С помощью стерильного зубоврачебного сверла он удалял два-три миллиметра поверхности с каждой из костей. Затем сверлил маленькую дырочку до плотной внутренней части кости. Ему приходилось часто останавливаться, чтобы сверло не нагрелось и чтобы из-за нагрева не потерять потенциальную ДНК (рис. 12.3). Ему требовалось примерно 0,2 грамма костного материала; этот материал опускался в раствор, который в течение нескольких часов растворял и связывал костный кальций. От кости оставались комочки белков и других неминеральных компонентов, ДНК же попадали в раствор, то есть в жидкую часть смеси. Йоханнес изолировал молекулы ДНК, соединяя их с кремнием — этот метод четырнадцать лет назад с успехом применял Матиас Хёсс для выделения ДНК из древних костей.

Чтобы подготовить молекулы ДНК для секвенирования по методу 454, Йоханнесу нужно было с помощью определенных ферментов убрать раскрученные и одиночные кусочки нитей ДНК на концах. Потом, используя следующий фермент, он пришивал к концам древних фрагментов специально синтезированные короткие отрезки современной ДНК, так называемые адаптеры. С присоединенными адаптерами отдельные фрагменты ДНК можно было “читать” на секвенаторе, как книгу; коллекция таких прочтенных “книг” складывалась в библиотеку. Адаптеры специально синтезировали для нашего проекта: они содержали короткую последовательность из четырех оснований, ТГАЦ, и эта цепочка должна была оказаться на стыке синтезированной и древней ДНК и служить своеобразным маркером искомых фрагментов. Это была одна из тех незаметных технических мелочей, которые часто играют огромную роль в продвижении молекулярной биологии в целом и в области исследования палео-ДНК в частности. Мы применили эти маркеры, так как наши библиотеки древних ДНК должны в какой-то момент покинуть чистые помещения и отправиться на секвенаторы 454. Чтобы наверняка быть уверенными, что ДНК из других библиотек, с которыми мы работаем в лаборатории, не попали в неандертальские библиотеки, мы будем обращать внимание только на те последовательности, которые начинаются с ТГАЦ. Идею адаптеров мы разработали и опубликовали в 2007 году[53].

Проведя все эти процедуры, Йоханнес приготовил вытяжки из восьми новых костей из Виндии. Затем он прогнал экстракты через ПЦР, чтобы проверить содержание неандертальской мтДНК и уровень зараженности современной ДНК. Почти во всех костях он нашел неандертальскую мтДНК. Это вдохновляло, но после всех разочарований с костями из России, Германии и Испании я придерживал свой энтузиазм. Мы немедленно отсеквенировали случайную выборку фрагментов ДНК из каждой библиотеки, чтобы оценить долю ядерной неандертальской ДНК. Процесс этот занял несколько дней, и пока мы ждали результата, я едва мог сосредоточиться на чем-то другом и заниматься остальными проектами. Мы же сказали во всеуслышание по всему миру, что составим неандертальский геном. И если в костях из Виндии недостаточно ядерной ДНК, то придется столь же громко объявлять о неудаче. Я не знал, где еще искать кости, лучших не было.

И вот перед нами результаты. Некоторые кости содержали от 0,06 до 0,2 процента ядерной ДНК, так же как и в остальных местонахождениях. Но в трех костях мы нашли 1 процент, а в одной почти 3 процента ядерной ДНК! Эта одна и есть знаменитая Vi-33.16, бывшая Vi-80. Мы не отыскали “волшебную косточку” с сохранной ядерной ДНК, но с тем, что у нас есть, можно было работать.

Итак, не все потеряно!

Глава 13Дьявол в деталях

Новогодние каникулы я провел в размышлениях: дела наши шли отнюдь не блестяще. Подсчитав, сколько нам потребуется костного материала, чтобы отсеквенировать полный геном, я получил десятки граммов. Столько не весили все имеющиеся у нас кости. Я чувствовал себя ужасно. Неужели я настолько безнадежный оптимист или просто сверх меры наивен? Что за идиотизм — верить в существование кости с бóльшим содержанием ДНК, чем в той первой кости из Виндии… Или я слишком понадеялся на 454, что она волшебным образом вытащит из рукава сверхмощную методику прочтения ДНК… Зачем я так лихо рискнул спокойствием и размеренной научной жизнью? Теперь я всего этого запросто могу лишиться.

Те двадцать пять лет, которые пришлись на мою работу в молекулярной биологии, были временем безостановочной технической революции. Те задачи, которые требовали в мои студенческие годы дней и недель изнурительного труда, теперь превратились в несложную процедуру: секвенаторы, пришедшие на современный рынок, выполняют ее за одну ночь. Трудоемкое и кропотливое бактериальное клонирование сменилось ПЦР, с помощью которой за несколько часов достигается результат тех прошлых многонедельных или многомесячных стараний. Вероятно, из-за этого я так легко решил, что за год-два мы сможем секвенировать в три тысячи раз быстрее, чем раньше, когда анализировались результаты для нашей концептуальной статьи в Nature. Действительно, с чего бы технологической революции останавливаться? За годы работы я усвоил, что в обычном случае, если речь не идет о сверхгениях, прорывы случаются, когда используются новейшие технологические достижения. Но это вовсе не означает, что мы должны становиться пленниками технологий и ждать, когда какое-нибудь изобретение чудесно разрешит наши трудности. Мы ведь можем немножко подсобить технологиям.

Я рассуждал так: если у нас мало костного материала и если в них ничтожное количество ДНК, то нужно хотя бы снизить потери ДНК на пути от экстракта к библиотеке. И после каникул на пятничном собрании я постарался донести до нашей группы чувство глубочайшего кризиса, в котором мы оказались. Я сказал, что на волшебную кость с кучей ДНК не осталось надежды и ничто чудесным образом нас не спасет. Мы должны использовать только то, что имеем, а это значит — заново переосмыслить каждый шаг лабораторных манипуляций. Например, что мы делаем при очистке ДНК-содержащих растворов? Ведь белков и других веществ в этих растворах совсем чуточка, а цена очистки — потеря большой доли ДНК. Если как-то минимизировать эти потери, то нам, может, и хватит имеющихся костей, и мы тогда дотянем до выпуска новых технологий 454.

Я неделю за неделей переспрашивал своих сотрудников, как именно они выполняют каждый из этапов работы с костями. Этот способ задавать один и тот же вопрос снова и снова я извлек из своего полузабытого юношеского прошлого, когда на военных сборах в Швеции нас учили допрашивать заключенных. И чем больше я спрашивал, тем больше приходил к убеждению, что при тщательной очистке вытяжек, предписанной протоколом 454, мы, по-видимому, теряем непомерно большую часть ДНК. И продолжал настаивать на осмыслении каждого шага этого протокола. А что еще оставалось делать?

В мои студенческие годы в молекулярной биологии вовсю использовались радиоактивные метки. Но потом во избежание обременительных мер предосторожности молекулярные биологи перешли к нерадиоактивным стратегиям. Потому теперешние студенты практически не имеют опыта работы с радиоактивными включениями. Однако при этом радиоактивные метки остаются наиболее чувствительным методом обнаружения даже ничтожного количества ДНК. И вот на одном из наших пятничных собраний я предложил Томи Маричичу пометить небольшое количество ДНК радиоактивным фосфором и использовать раствор для приготовления отсеквенированной библиотеки. А раствор с остатками ДНК, которые в обычных случаях выбрасываются, можно измерить на радиоактивность. Уровень радиоактивности покажет, сколько ДНК из раствора не пошло на секвенирование. Таким образом, можно напрямую измерить уровень потерь при очистке вытяжек.

Мой план, когда я изложил его на пятничном собрании, был встречен молчанием. Я сначала подумал, что все просто замерли в молчаливом восхищении перед изяществом и простотой моего решения. Но на самом деле в своем бездумном натиске я не принял во внимание, как живет моя группа. В подобном устройстве жизни кроется реальная сила исследовательской группы, но временами оно же оборачивается не на пользу делу. У нас принято было обсуждать любую идею, каждый мог свободно высказывать свое мнение, и в результате на собраниях мы приходили к общему решению, что и как нужно сделать. Но, как и в любой демократии, временами берут верх неразумные решения. На том собрании некоторые выказали решительный скептицизм. К их мнению в группе тогда прислушивались. К моему плану предъявили ряд претензий, вызванных, по-моему, подсознательным страхом перед малознакомыми методиками, к тому же старомодными и небезопасными, и вообще жуткими. Я решил не торопить события. Сначала обратиться к другим методам — попробовать оценить, сколько ДНК остается после каждой процедуры приготовления библиотек, и испытать новую технику для ПЦР. Но все это оказалось бесполезным — обычные методы показали слабую чувствительность или не годились по другим причинам.

Месяц за месяцем я продолжал настаивать на радиоактивном эксперименте, мое нетерпение росло, и я уже страстно жалел об ушедших временах автократии, когда слово профессора было законом. Но, стиснув зубы, соглашался, не желая разрушать атмосферу свободного обмена мнениями, которая, на мой взгляд, очень важна для дела.

И вот, когда все остальные способы были испробованы и отброшены, группа скрепя сердце согласилась. Томи неохотно заказал радиоактивный фосфор, пометил некоторое количество обычной человеческой ДНК, которую мы использовали для проверочных опытов, и потом проделал все процедуры по приготовлению вытяжек для секвенирования по 454. Результат получился ошеломительным. Он показал, что на первых трех этапах теряется от 15 до 60 процентов ДНК. Для биохимических процедур такой уровень потерь в принципе ожидаем. Но на последнем этапе, когда с помощью сильных щелочей разделяются комплементарные нити ДНК, потери против изначального количества достигают более 95 процентов. Естественно, для тех, кто работает с современной ДНК, все эти потери не имеют значения — материала у них полным-полно, так что даже 95-процентная потеря незаметна. А вот при работе с древностями она оборачивается полной катастрофой. Но раз проблема выявлена, то и решение нашлось. Чтобы разделить ДНК на одиночные нити, годятся не только щелочи. ДНК можно просто нагреть. Томи испробовал этот метод и обнаружил, что выход полученного для секвенирования раствора в 10–250 раз выше, чем при воздействии щелочами! С такими картами можно продолжать игру.