Неизбежность странного мира — страница 11 из 81

…Частицы. Это так понятно, так просто. Они, наверное, круглые, аккуратненькие, как бильярдные Шары. Ученые любят это сравнение, когда заходит речь о любого рода частицах. И неспроста: физики мечтают о наглядности своих объяснений нисколько не меньше, чем писатели о выразительности своих образов. И сама природа тоже ведь любит эту экономную и ясную форму шара: Земля и Луна. Солнце и звезды — все они шарообразны. Наверное, и в микромире тоже все шарики, шарики, шарики — мал мала меньше, как в детской разъемной игрушке… Размеры в природе совсем не важны: в мире звезд есть карлики и гиганты, а движением и тех и других все равно ведь управляют ясные и понятные законы небесной механики. Атомы тоже, говорят, подобны солнечной системе: вокруг шарообразного ядра вращаются шарики-электроны — в любой книжке так их рисуют. Как все хорошо и просто! А если еще и свет состоит из частиц, тогда совсем благодать. Снова шарики, снова микробильярд, снова испытанные, веками проверенные законы старой механики. Нет, правда, как славно все получается: единая картина строения материи устанавливается сама собой — мгновенно и необременительно! Да здравствует частица света — фотон!

…Мы размечтались, но не как древние натурфилософы; а как Маниловы — натурфилософы домашние, те, что, созерцая жучка на травинке, любят вздохнуть: «Как мудро устроено все в природе, пойти чайку попить, что ли?» Поглядывая на ночные небеса, люди такого склада любят задумчиво поговорить о простоте и гармонии в коловращении вселенной.

А в эти часы какой-нибудь бедняга физик, как уставший музыкант, разминает кисть руки: сколько бумаги изрисовано лебедиными шеями интегралов и верблюжьими горбами кривых, а непредвиденные противоречия не исчезают — старая теория и новые факты расходятся! Надо будет еще долго работать, думать, спорить, томиться непониманием, выискивать обходные пути.

«Вы сочинили и напечатали в своем умном сочинении, — как сказал мне Герасимов, — что будто бы на самом величайшем светиле, на Солнце, есть черные пятнушки. Этого не может быть, потому что этого не может быть никогда… И для чего на нем пятны, если и без них можно обойтиться?» — так писал ученому соседу чеховский домашний натурфилософ, отставной урядник Войска Донского.

Мечты о материи, построенной из шариков, очень похожи на это желание «обойтиться без черных пятнушек». Может быть, природа и устроена просто, да только заранее решительно неизвестно, что это значит. Простота почему-то любит притворяться сложной и необъяснимой. И это вечное ее притворство.

«Не обижайтесь, что я вам так мало пишу. Демон проблем безжалостно сжимает меня в своих когтях и заставляет предпринимать отчаянные усилия, чтобы преодолеть математические трудности… Думаю, что я, наконец, ухватился за краешек истины», — так писал ученому другу величайший физик современности, одно из открытий которого и навело нас на этот разговор, Альберт Эйнштейн.

Даже самые проницательные из ученых скромнее домашних мудрецов. Краешек истины, только краешек! — для них это прекрасная награда за отчаянные усилия. И они не смущаются тем, что такой краешек может выглядеть неправдоподобно странно — была бы уверенность, что это «высунулась истина».

Фотон не упростил картину мира — не превратил материю в Сахару бильярдных шариков. То, что последовало позже за его открытием, выявило в этой картине удивительные черты. Домашние натурфилософы (даже с учеными степенями!) до сих пор пожимают плечами: «Этого не может быть, потому что этого не может быть никогда». Впрочем, в физике таких урядников, кажется, уже не осталось. Они сохранились в других науках о природе. Это они противятся вторжению современной физики в биологию, как еще недавно противились вторжению кибернетики в технику, словно естествознание не едино, словно не едина материя во вселенной.

Судьбы научных идей драматичны, если знакомиться с ними не по учебникам.

6

Все на свете имеет свою историю. За пять лет до появления идеи фотона в научном языке появилось слово «квант». В 1900 году, как бы начиная новый век, оно впервые прозвучало на заседании Немецкого физического общества, когда берлинский профессор Макс Планк докладывал о выводе новой формулы, относящейся к тепловому излучению.

«На следующий день утром меня разыскал коллега Рубенс и рассказал мне, что после заседания, глубокой ночью, он сравнил мою формулу с данными своих измерений и всюду нашел радующее согласие», — так писал позднее Планк.

Проблема была частная, но глубокая. Планк — тихий, педантичный, строгий, очень немецкий ученый — работал над решением трудной задачи много лет. Успех пришел к нему тогда, когда он отважился на гипотезу, о которой никто не посмел бы сказать, что она была «тиха и педантична». Уже более полувека ее называют дерзкой, революционной, великой гипотезой. И это легко понять: он взглянул на излучение новыми глазами, он различил в нем черты, до него никем не замеченные, — черты вещества!

Он высказал мысль, что энергия излучается и поглощается отдельными порциями. «Сколько» по-латыни — «квантум». Планк назвал эти порции квантами, не подозревая, что еще при его жизни возникнут и разрастутся многочисленные ветви современной физики, в названии которых будет неизменно присутствовать придуманное им для решения одной — только одной! — задачи коротенькое и очень простое по происхождению слово. Квантовая механика, квантовая статистика, квантовая электродинамика… Появилось существительное «квантование», глагол «квантовать», причастие «квантованный»… Пожалуй, ни один писатель не удостаивался чести быть изобретателем так быстро и так прочно укоренившегося слова. И какого слова — знаменующего целую эпоху в мышлении исследователей природы!

Вещество прерывисто, зернисто. Это кажется очевидной истиной. Но энергия — как может быть прерывистой или зернистой она? А гипотеза Планка как раз это и утверждала. Его кванты были как бы атомами — в подлинном смысле неделимыми порциями — энергии излучения. Порции меньшей, чем квант, или равной миллиону квантов с осьмушкой тело не может ни излучить, ни поглотить. Кванты не дробятся!

Эта мысль была так неожиданна, что сам Планк сначала смотрел на нее только как на рабочую гипотезу: иначе правильная формула не получалась. Специалисты по тепловому излучению не принимали эту идею всерьез, а физики других специальностей несколько лет не обращали на нее никакого внимания.

Об этом вспоминает известный теоретик Макс Борн: он не слышал в ту пору о квантах ни в Геттингенском, ни в Кембриджском университетах — двух передовых научных центрах тогдашней Европы. Зато он, наверное, мог бы услышать о них в Москве, в старых университетских корпусах на Моховой: там работали два выдающихся физика — Б. Голицын и Н. Михельсон — прямые предшественники Планка, у которых его идея не могла не встретить сочувствия. Но дело это уже давнее, и гадать сегодня о возможном и неслучившемся бесполезно.

Так или иначе, первый год нашего века стал годом рождения «квантовой эры» в естествознании. И здесь нельзя не рассказать, как история физики подшутила над учителем Макса Планка — профессором Мюнхенского университета Филиппом Жолли.

Этот ученый, в свое время довольно популярный, принадлежал к разряду тех ограниченных людей без воображения, которые в любую эпоху склонны думать, что «все главное сделано до нас», что настоящее всегда беднее прошлого, а будущее ничего особенного не обещает. Таким людям всегда казалось и кажется, что человечество уже не ждут впереди истинно великие открытия, что основные законы природы уже установлены и дело только за тем, чтобы уточнять детали и дорисовывать подробности в физической картине мира. Такие люди пророчат детям лишь один удел — исправно и покорно следовать дорогой отцов.

Макс Планк запомнил тот день, когда он, совсем еще юноша, пришел к семидесятилетнему профессору Жолли и сказал, что намерен посвятить свою жизнь теоретической физике. «Молодой человек, — предупреждающе сказал учитель ученику, — зачем вы хотите испортить себе жизнь, ведь теоретическая физика уже в основном закончена… Стоит ли браться за такое бесперспективное дело?»

Филипп Жолли умер в 1884 году, не услышав, как его ученик произнес слово «квант».

Но это не все. Уже произнеся свое знаменитое слово, сам Планк еще не догадывался, как круто свернул он с дороги отцов. И вся опрометчивость былого предупреждения Филиппа Жолли открылась ему не в 1900 году, а гораздо позже, когда другие исследователи (и первым из них — Альберт Эйнштейн) превратили его «рабочую гипотезу» в одну из принципиальных основ всей современной физики. Тогда-то, уже в старости, чествуемый как родоначальник квантовой теории, Планк рассказал во всеуслышание о своем давнем разговоре с Жолли, рассказал с улыбкой, словно о чем-то нелепо анекдотическом.

Между тем… Между тем нельзя не заметить, что история подшутила и над самим Планком. В своем подчеркнуто настороженном отношении к собственной гениальной гипотезе квантов он тоже, хотя и совсем по-иному, оказался перед лицом младших современников (прежде всего — перед лицом Эйнштейна) в положении отца, не советующего детям доверяться новым дорогам.

В 1900 году Эйнштейн был ровно в два раза моложе Планка: 21 год и 42 года. Молодого, еще безвестного швейцарского учителя математики и физики, только что сдавшего дипломный экзамен, уже «мучил демон проблем». А был швейцарский учитель начинающим теоретиком совсем иного склада, чем берлинский профессор.

Как бы сделать это психологическое различие ясным, не прибегая к утомительным рассуждениям?

…Оба великих физика любили музыку, оба серьезно занимались ею. Эйнштейн был скрипачом, Планк — пианистом. Рассказывают, что Эйнштейн не только прекрасно исполнял любимые вещи, но и охотно пускался в импровизации, подчиняясь неожиданному зову души. Планк был знатоком музыкальной классики и работал над теорией музыки. Одно время он читал в Берлинском университете лекции по этому предмету. (Известно, что в годы юности он даже колебался в выборе будущей профессии, не зная, стать ли ему ученым или музыкантом.)