Так невидимые и неслышные события, к которым, казалось бы, и не подступиться с точными измерениями, вдруг становятся предметом строгого учета. А тогда неудивительно, что появляется возможность их «увидеть и услышать».
Здесь лежит исток нескончаемой серии открытий в мире элементарных частиц. Здесь исток и открытия настоящего природного заповедника этих частиц — космических лучей.
Листочки электроскопа сами опадали со временем. Кто-то стягивал с них заряды, или, как говорят ученые, нейтрализовал их. Это могли быть только заряженные ионы.
Значит, кто-то, пренебрегая непроницаемостью герметического сосуда, все-таки в него проникал и превращал нейтральные атомы газа в странников Фарадея.
Пронизывать стенки камеры с электроскопом способны были рентгеновские лучи и лучи радиоактивных элементов. Их энергии хватило бы и на проникновение внутрь камеры и на ионизацию газа.
Так, может быть, подумали физики, вблизи камеры действительно всякий раз ютятся какие-то неведомые источники этих лучей? Вместо того чтобы искать и устранять их, проще было окружить камеру толстыми свинцовыми экранами — достаточно толстыми, чтобы такие лучи поглотить.
Вообразите себе бегуна, пересекающего пустую площадь: его бегу никто не мешает. Так движутся лучи в вакууме: на их пути могут попасться лишь редкие прохожие — единичные частицы вещества. Но если площадь заполнена народом, бегун вынужден продираться сквозь толпу, расталкивая встречных и теряя на это силы. В конце концов он выдохнется и застрянет в толпе. Это случится тем раньше, чем гуще толпа. Так движутся лучи через вещество. Да при этом они бегуны с завязанными глазами: выбирать направление им не дано. Чем плотнее вещество, тем короче путь, на котором они успевают растратить всю свою энергию. Но этот путь все-таки тем длиннее, чем их первоначальная энергия больше.
Толща свинца поглощала рентгеновские и радиоактивные лучи. А электроскоп разряжался! Было над чем задуматься.
Сначала физики махнули рукой — «ошибки опыта». Но эти мнимые ошибки повторялись с такой регулярностью и однообразием, что досада физиков на несовершенство приборов вскоре сменилась острейшим любопытством. Возникла самая естественная для той поры мысль: существуют еще какие-то сверхпроникающие, сверхэнергичные лучи, для которых и толща свинца не преграда.
Что же они такое, эти дьявольские лучи? Как велика их чудовищная энергия? Откуда они приходят? Простые вопросы сменились сложными.
Поначалу новые предполагаемые лучи вовсе не считали космическими. Им приписывалось земное — почвенное — происхождение. Но отсюда немедленно следовал простой и легко проверяемый вывод: рождаясь в земной коре и пробиваясь сквозь толщу атмосферы снизу, они должны были терять энергию с высотой и все слабее ионизировать газ в замкнутой камере электроскопа. «Дух приключений» погнал ученых в горы — пешком, на лошадях, на машинах. И за облака — в зыбких гондолах воздушных шаров.
И вот тут-то оказалось, что все происходит так, словно небо и земля поменялись местами: с высотой электроскоп разряжался все быстрее, как если бы он не удалялся от источника лучей, а приближался к нему! В 1910 году австрийский физик Гесс, побывав на пятикилометровой высоте, впервые обоснованно высказал мысль, что это вовсе не земные, а «высотные лучи». Потом, уже после вынужденного бесплодья тяжелых лет первой мировой войны, когда большинству физиков пришлось заниматься не своим делом, немец Кольхерстер поднялся на аэростате до высоты в двенадцать километров и установил, что там, за облаками, ионизация в 30 раз сильнее, чем на уровне моря!
Стало несомненным, что всепроникающие лучи приходят к нам откуда-то из мировых глубин. Еще ничего не зная об их составе и повадках, кроме того, что энергия их по нашим земным масштабам огромна, физики с полным правом назвали их космическими. Так началась сорокалетняя история их всестороннего исследования. Она продолжается и сегодня. И будет продолжаться завтра, потому что никогда и ни о чем нельзя узнать всего или хотя бы достаточно много. И еще потому, что космические лучи интересуют всех.
Астрофизики и радиоастрономы ищут источники их происхождения. Радиотехникам и метеорологам важна их роль в ионизации земной атмосферы. Биологам и врачам нужно знать их действие на живую природу и человека. Неограниченный круг вопросов связан с космическими лучами, начиная с проблемы отклонения их в магнитном поле Земли и кончая статистикой раковых заболеваний.
Но нам нужно взглянуть на них только глазами физиков-ядерщиков. И даже еще ограниченней — глазами физиков-элементарщиков (правда, такого слова еще нет в обиходе, однако рано или поздно оно, наверное, появится, как появилось уже слово «ядерщик» вслед за словом «атомщик»).
К подземным и высокогорным лабораториям ныне присоединились космические лаборатории на спутниках. Там приборы имеют дело с космическими лучами как бы «в чистом виде», еще не успевшими претерпеть никаких злоключений на своем пути через воздушный океан, окружающий Землю.
В этих первичных космических лучах были обнаружены ядра едва ли не всех устойчивых элементов. И можно говорить просто о химическом составе первичных лучей. Этот состав только приблизительно отражает относительную распространенность разных элементов во всей видимой вселенной вокруг нас. Чем тяжелее ядра, тем реже они попадаются. Ядер обыкновенного водорода — протонов — подавляюще много. Заметно меньше альфа-частиц — ядер следующего легкого элемента — гелия. Еще меньше ядер углерода, азота, кислорода, железа… Отступления от «нормы» — например, «слишком большой» процент лития, бериллия, бора — наводят физиков на интересные размышления о ядерных реакциях в мировом пространстве, в результате которых возникает, очевидно, «избыток» этих элементов. Такие отступления от ожидаемого помогают ученым строить гипотезы о происхождении космического излучения.
Однако оставим первичные лучи, оставим атомные ядра. Истинным заповедником элементарных частиц, где многие из них были впервые открыты, оказались вторичные космические лучи — те, что образуются в земной атмосфере, когда кончаются странствия первичных, прокладывающих себе путь сквозь толпу крупинок атмосферного вещества.
По справедливости эти вторичные лучи уже нельзя называть космическими. Они вполне земного происхождения. Не будь атмосферы — не было бы и этих лучей: первичным частицам из космоса не с кем было бы сталкиваться в пути. Но, с другой-то стороны, не будь первичных луней, не врывайся они к нам из недр мирового пространства, откуда взялись бы в земной атмосфере частицы колоссальных энергий? А именно такие, разогнанные до громадных скоростей частицы способны акт простого столкновения с веществом превращать в чудо рождения новых частиц. У лучей вторичных как бы двойное подданство: и космическое и земное. Космос дает бьющий молот, Земля — наковальню, искры — вторичные лучи.
В наши дни физики взяли на себя роль самого космоса, создавая искусственные земные ускорители заряженных частиц. Замечательно, что они решились на это, вовсе не зная доподлинно того способа, каким во вселенной ускоряются протоны и другие ядра: окончательного ответа на этот вопрос нет до сих пор.
Первичные космические лучи похожи на стремительный, но редкий дождь. Вторичные — подобны ливням. Это слово ввел в научный обиход английский физик Патрик Блэккет в начале 30-х годов. Но крестным отцом вторичных лучей мог бы еще раньше стать наш академик Д. В. Скобельцын, За четыре года до Блэккета он впервые сфотографировал следы вторичных частиц в туманной камере Вильсона. Скобельцын работал тогда вместе с Пьером Оже, который позже в своей книге остроумно заметил, что в названии «ливни» отразилось английское происхождение этого термина — «он очень подходит к дождливой Англии». «В солнечной Франции, стране земледелия, — добавил Оже, — мы называем пучки одновременно появляющихся частиц снопами». Русский физик мог бы назвать их и ливнями, и снопами, и метелью, и падающими звездами: в необъятной России хватило бы привычных явлений природы на любой вкус.
Советские физики уже тридцать с лишним лет неустанно изучают космические лучи — и первичные и вторичные. Лаборатория на Арагаце — один из центров этой большой научной работы. Мы могли бы совершить экскурсию в любой из них. Почему же любопытство привело нас на Арагац?
Горы… 3 250 метров… Облака… Дикие камни… Необжитые места… Словом, «дух приключений». Но все-таки не это главное.
Арагацкая станция — единственная в своем роде: долгие годы она непрерывно занималась изучением именно состава космических лучей. Там эти лучи привлекали к себе внимание и надежды физиков, прежде всего как природная лаборатория, в которой могли быть открыты многие элементарные частицы материи. С Арагацем, горой очарований и горой разочарований, связана полная драматизма глава в истории таких открытий. Этот драматизм научных исканий стоит понять и оценить.
Очарования и разочарования толпятся в истории любой науки. Почему бы должна была или могла избежать их наука, изучающая самое малое и неуловимое из всего, что известно в природе?
Глава вторая
Дорога в город без прошлого. — Откуда этот всеобщий интерес? — Поиски верных сравнений. — Странная пустота. — Вещество и поля. — «Вы должны это обязательно вспомнить!» — Ядерная праща, готовая к бою. — Вместо опасного приручения молний. — В городе сосредоточенности. — Так уж устроен человек — В Дубне создаются «первоосновы материи».
А еще раньше — на исходе зимы — мне посчастливилось ехать в подмосковный город Дубну ради той же неодолимой охоты:, посмотреть, как незримое и неслышное становится явным.
Машина летела безупречным асфальтом. Шоссе прорезало древнейшие земли России: из восьмисотлетней Москвы старинной дорогой мы ехали в направлении Дмитрова, который еще старше столицы.
Над белой равниной земли покоилась белесая равнина неба. Снег еще лежал в полях: ранний апрель под Москвою — пора вполне еще зимняя. Но в пейзаже этого робкого неюжного апреля темного было не меньше, чем светлого: так застроено Подмосковье. Темными были не только леса за полями и деревни в полях. Чернели дальние силуэты фабричных труб и смутные очертания старинных монастырей. Темными башнями поднимались над равниной шлюзовые сооружения канала имени Москвы. Старина затерялась в современности. Но и в том, что принадлежало ей, и в том, что принадлежало наши