Неизбежность странного мира — страница 66 из 81

двойственность материи, квантовая механика.

Так, может быть, и заманчивый образ волновых пакетов вовсе не надо было бросать?

Впрочем, этот образ уже и нельзя было просто отбросить, даже если б физикам и хотелось от него освободиться. Волновое уравнение Шредингера прекрасно служило механике микромира. Его решения — пси-функции или пси-волны — безошибочно описывали, скажем, поведение электрона в атоме водорода. Значит, они отражали то, что Эйнштейн называл «краешком истины». Ну, а эти решения, эти физически непонятные пси-волны, как бы сами собой, по воле математики, слагались в волновые пакеты. И получалось так, что электрон, если и не сконструирован из волн, то все-таки движется как бы в волновой упаковке. А удержать эту волновую упаковку от расползания было немыслимо — та же математика диктовала тут свою волю.

Так неужели только оттого, что «математика велела», электроны и любые частицы обязаны были растворяться в пространстве, как жемчужины в уксусе?

Конечно, с математикой шутить нельзя — она неподкупна. Но частицы надо было спасти! Это повелевал опыт. Совершенно так же, как в 1911 году он повелевал спасти планетарный атом. И так же, как атому помогла уцелеть проницательность Нильса Бора, догадливость физиков должна была выручить из трудного положения элементарные частицы, закутанные в странные волновые пакеты. Не так ли?

Все очень резонно.

Однако это и значило, что физикам надо было понять, о чем же рассказывает им честная математика? Какие свойства природы прячутся за шредингеровскими пси-волнами, раз уж это наверняка не волны материи? Короче, физики задним числом вынуждены были осмыслить дело собственных рук. Макс Борн первым вник в непонятное. Или по крайней мере первым во всеуслышание и обоснованно заговорил о физическом смысле пси-волн, отвергнув шредингеровскую «волновую ересь».

5

Нет, сначала он только почувствовал правду.

Он вспоминает об этом, как человек, которого осенило: как поэт о счастливой строке или актер о внезапно найденном жесте. «Когда появилась волновая механика Шредингера, я сразу почувствовал, что она…» Дальше следует мудреная фраза на физико-математическом языке со всякими там «амплитудами вероятности» и «квадратами модуля пси», так что кажется непостижимым, как подобные вещи можно почувствовать, да еще сразу.

Однако по свидетельству многих теоретиков, например академика Ландау, новые идеи приходят к ним именно в виде математических или полуматематических образов.

Физики переживают подобные внутренние события нисколько не реже и нисколько не менее сильно, чем поэты или изобретатели. Осеняет ищущего. Рассказывают, что, когда Ньютона спросили, как открыл он закон тяготения, он ответил: «Я думал об этом». И во что бы ни отлилось позже озарение ищущего — в художественный образ, формулу или конструкцию, оно, это озарение, имеет еще и предысторию. Оно возникает на уже возделанном поле. Его предыстория — незаметная работа мысли. Его почва — глубокое чувство реальности. И право же, не видно, чем тут отличается исследователь от художника?

Весной 1960 года у меня был случай дважды убедиться, что такого различия нет. Сначала — в Дубне, потом — на Арагаце.

…Помните, как все газеты сообщили о блестящем успехе дубенских экспериментаторов, работавших под руководством академика Векслера и профессора Ван Ган-чана? Тогда, ранней весной 60-го года, они открыли новую элементарную частицу из семейства гиперонов — частиц тяжелее протона.

Существование этой частицы предсказали теоретики. Они заранее окрестили ее отпугивающе красивым именем: анти-сигма-минус-гиперон. Предсказание было сделано, если так можно выразиться, автоматически. Оно вытекало из общего, открытого Полем Дираком правила, что у каждой частицы есть античастица[13]. Само собой возникло и чрезмерно красивое имя нового обитателя микромира: раз уж физики, открыв в середине 50-х годов сверхтяжелую («гипертяжелую») частицу с отрицательным зарядом и массой около 2 300, назвали ее греческой буквой «сигма» — «сигма-минус-гиперон», им не оставалось ничего другого, как окрестить ее теоретического двойника — «анти-сигма-минус». У этого двойника — положительный заряд, а величина массы — та же. И многие свойства те же. И среди них — недоступное для растолкования и самим физикам не очень понятное свойство — странность.

Только на дубенском гиганте ускорителе можно было в ту пору доказать, что такая странная «вещичка» действительно создается при ядерных реакциях. Дело в том, что возникновение частиц в ядерных реакциях — это как бы овеществление энергии участников взаимодействия. Гипероны так массивны, что для их создания нужна огромная энергия (все по тому же известному нам закону Эйнштейна: Е = М·С2). Энергии дубенских протонов-миллиардеров для этого достаточно. Но ее недостаточно у протонов, ускоряемых на других, менее могучих машинах. В Беркли (Калифорния) протоны приобретают энергию около 6 миллиардов электроновольт. Ее хватило американским физикам на создание антипротонов и антинейтронов. Для «производства» антигиперонов ее уже слишком мало.

Вот что интересно: экспериментаторы наши вынуждены были обследовать 40 тысяч кинокадров знакомого нам фильма «Ионизация», правда снятого не в туманной, а так называемой «пузырьковой камере», в которой вдоль трассы заряженной частицы выстраивается тоннель из пузырьков. И лишь на одном из кадров сумели найти след анти-сигма-минус-гиперона. На одном из 40 тысяч! Наткнулся на редчайший след молодой дубенский физик Анатолий Кузнецов.

Вскоре после этого события случай привел в Дубну группу писателей и журналистов, пишущих о науке. Естественно, всем хотелось заодно увидеть и снимок с нашумевшего кадра. И вот на первом весеннем солнцепеке под дубенскими соснами человек в лабораторном халате развернул перед нами большую фотографию.

Она выглядела обыкновенно — как заурядный снимок происшествий в микромире. Множество похожих фотографий снимают ныне физики каждый день в ядерных лабораториях разных стран. Следы пролетевших, возникших, распавшихся частиц — либо белые нити тумана, либо белый пунктир пузырьков. На черном фоне — беспорядочная метель. Вот и все. Но на этой фотографии были еще проведены рукою физика тонкие цветные линии. Они выделили из снежной метели один след и его разветвления — след анти-сигмы и тех частиц, в которые она превратилась.

— И это все? — разочарованно спросил один журналист. — И вы уверены, что это был он, ваш анти-сигма-минус?

Человек в халате улыбнулся.

— Видите ли, конечно, на глазок этого сказать нельзя, но детальные измерения и обсчеты…

— Позвольте, — прервал кто-то, — но разве можно обсчитывать все следы? Их на одной этой фотографии сотни!

Человек в халате снова улыбнулся.

— Понимаете, многие следы отпадают сразу: ясно видно, что это электроны, протоны и прочее. А тут… — он замялся на мгновенье, а затем сказал как раз то, что мне больше всего хотелось услышать: — А тут я как-то обратил особое внимание на этот след, знаете как-то почувствовал

— Простите, — снова прервал тот же голос, — значит, это вы его первый нашли? — в голосе уже звучал журналистский азарт.

— Да, в общем так… — не очень охотно признался человек в халате.

— А как ваша фамилия? — журналисты запросто задают этот милицейский вопрос.

— Кузнецов, Анатолий Алексеевич.

Наверное, каждый из нас, литераторов, подумал тогда под Дубенскими соснами, что когда-нибудь ему пригодится это нечаянное признание физика: «Знаете, я как-то почувствовал». Разговор, разумеется, не стенографировался. И если эта страничка попадет на глаза Анатолию Алексеевичу Кузнецову, он, может быть, запротестует: «Неужели я так сказал?» И захочет поправиться: «Не почувствовал, а как-то сообразил, или, вернее, просто подумал — словом, ощущения и чувства тут явно ни при чем».

И все-таки сказал он именно так, а не как-нибудь иначе. И сказал точно — по праву ищущего. По тому же праву, по какому так же выразился о своей «находке» теоретик Макс Борн. По праву поэта работающего и только потому внезапно осеняемого строкой. Черным пламенем отсвечивала на солнце фотография и матово поблескивали цветные линии, подтверждавшие, что чутье не обмануло экспериментатора: он почувствовал реальность.[14]

Той же весною, но позже, совсем в другой обстановке и по другому поводу, вдруг разговорились на сходную тему физики-теоретики. Были они все талантливыми и почти все молодыми. Владимир Грибов и Игорь Дятлов из Ленинграда, Лев Окунь и Игорь Кобзарев из Москвы, Иосиф Гольдман из Еревана… А невольным председательствующим был член-корреспондент Академии наук Аркадий Бенедиктович Мигдал, человек разносторонне одаренный и возрастом как бы не обладающий.

Обсуждали неразрешимый вопрос: «Кому легче — писателям или теоретикам?» Такое неожиданное сопоставление было не совсем случайным: и те и другие работают непрерывно, не расставаясь со своими мыслями; и те и другие не ведают иного ремесла, кроме мастерского умения изводить бездну бумаги. Обсуждение, наверное, бессрочно затянулось бы, как обычно, когда у темы нет ясных границ, а решения вопроса никто и не ждет. Но дело в том, что теоретики сидели не в креслах и опирались не на лекторские указки. Они тряслись в открытом прицепе арагацкого трактора под моросящим дождем и холодным ветром, который, кажется, ни «когда не стихает на тех высотах Арагаца, куда и к началу июня еще не успевает доползти из Араратской долины весна. Два часа назад теоретики оставили темнокаменный, как старинные замки, Нор-Амберд. Там, возле последней деревушки Каши-Булах, в новом здании Арагацкой лаборатории, на высоте 2 тысяч метров закончилось заседание традиционной весенней конференции по физике космических лучей и элементарных частиц. И группа физиков с севера решила променять вечерние огни и жару Еревана на безлюдье и лыжную целину