После того как были описаны характеристики нейронов, возникла необходимость выяснить, как они объединены и расположены в мозге. Задолго до изобретения функциональной магнитно-резонансной томографии, которая позволила получать изображения мозга в высоком разрешении и в реальном времени и сопоставлять специфические функции мозга (например, во время прослушивания музыкальных произведений или решения математических задач) с определенными его областями, в самом начале XIX века один из моих любимых пионеров в исследовании мозга Франц Йозеф Галль уже начал картографировать функциональные зоны мозга человека. Галль был так увлечен изучением, что не замечал, как его исследование тормозится отсутствием оборудования для создания изображений. Казалось, что пусть и ограниченных, но уже накопленных им знаний и безграничного воображения достаточно для осуществления этой задачи. Он предположил, что размер скоплений клеток на выпуклостях коры головного мозга прямо пропорционален способностям человека. Он имел в виду не те «вздутия», о которых мы говорили во введении, а те неровности и выпуклости, что «украшают» череп каждого человека. Например, у людей с хорошо развитым чувством времени такая выпуклость якобы гораздо больше, чем у тех, кто постоянно опаздывает. После того как Галль стал сотрудничать с коллегой, обладавшим предпринимательской жилкой, Йоганном Шпурцхаймом, его идеи оформились в целое направление, получившее название «френология». В США даже появились эксперты, которые перед приемом на работу оценивали потенциальных кандидатов по схемам Галля[58]. В итоге отсутствие доказательств (то есть настоящих выпуклостей мозга) остановило распространение френологии, но стремление узнать о специфических областях мозга и связанных с ними функциях как можно больше осталось.
Сегодня мы с помощью больших сканеров можем отследить активность мозга человека при разных видах деятельности. Благодаря сканерам, основанным на технологии функциональной магнитно-резонансной томографии (фМРТ), мы получаем прекрасные цветные изображения самых активных участков мозга во время выполнения человеком специфических задач. Тщательное изучение снимков человеческого мозга и качественные лабораторные исследования подопытных животных дают ценную информацию о функционировании отдельных областей мозга. Хотя у ученых до сих пор больше вопросов, чем ответов, они уже смогли точно определить, какие участки мозга отвечают[59] за сон, осторожность, страх, зрение, слух, голод, движение и речь. С точки зрения эволюционного развития природа сохранила один шаблон для производственного отдела мозга. Например, у крыс, моих основных подопытных, основные области в мозге расположены так же, как у человека, хотя между нами имеются уникальные различия. Но об этом мы поговорим позже. Помимо изображений, полученных с помощью МРТ, технический прогресс добавил в арсенал нейробиологии еще несколько замечательных методов, подобных диффузионной спектральной томографии, которая позволяет проследить связи между участками мозга. Эти связи иногда называют «белым веществом», потому что клеточный материал окрашен в жемчужно-белый цвет. Еще один метод, CLARITY («ясность»), разработанный Карлом Диссеротом из Стэнфордского университета, позволяет удалить из ткани липиды, сделав мозг настолько прозрачным, что окрашенные области становятся видны целиком[60][61]. По мнению Гарвардского нейробиолога Джеффа Лихтмана, который для реконструкции нейронов использует 3D-моделирование[62], сложность новых методов построения изображений состоит в том, что они производят огромное количество данных. Чтобы проиллюстрировать цифры наглядно, можно привести его работу по составлению карты нейронных связей мозга мыши. Работая с тонким срезом мозговой ткани размером с крупинку соли, исследователь получил сотню терабайт информации. Для сравнения: сотня терабайт – это примерно 25 000 кинофильмов в высоком разрешении[63]. Учитывая, что такой массивный объем данных был получен после анализа небольшого фрагмента ткани мозга мыши, только представьте, сколько информации будет получено после анализа целого мозга мыши, или, да помогут нам небеса, человеческого мозга, который в 3000 раз больше мышиного!
Подобные исследования, конечно, очень увлекательны, но мы по-прежнему находимся далеко от того, чтобы считать их значимым терапевтическим подспорьем для поддержания мозга в здоровом состоянии. Я уже упоминала, что мощный взрыв в нейробиологических исследованиях в прошлом веке позволил ученым локализовать зоны мозга, отвечающие за отдельные функции. Например, рассмотрим простые категории. Гиппокамп, что в переводе с латинского языка означает «морской конек», отвечает за обучение и память; миндалевидное тело – за страх; таламус – своего рода ретрансляционная станция, которая задействована во многих основных функциях мозга; кора поясной извилины участвует в реакциях, вовлекающих эмоциональные и когнитивные компоненты, а префронтальная кора отвечает за исполнительные функции.
Рис. 5.Строительные блоки мозга: нейронная локализация, организация и интеграция. По мере того как поведение усложняется, например в игре, многие области мозга начинают работать сообща, задействуя одновременно сенсорную систему, движение, эмоции и принятие решений и выдавая соответствующую реакцию. Гиппокамп, миндалевидное тело и кора поясной извилины нередко рассматриваются как часть эмоциональной (или лимбической) системы, префронтальная кора участвует в принятии самых сложных решений, а за сенсорную информацию и моторику отвечает таламус. Два полушария человеческого мозга расположились на верхушке одного мозгового ствола; эти полушария соединяет мозолистое тело. Рисунок Билла Нельсона (Bill Nelson)
На рис. 5 показано, что в здоровом развивающемся мозге все зоны работают сообща, продуцируя сложные реакции, например при игре с кубиками. Но не стоит думать, что эти участки мозга – независимые агенты, наделенные строго определенными функциями. Я хочу еще раз подчеркнуть, что совместная работа всех областей мозга, по всей вероятности, еще более важна для его оптимальной работы. Брайан Баррел в своей увлекательной книге «Открытки из Музея мозга» (Postcards from the Brain Museum) задается вопросом: что конкретно подразумевается под локализацией, когда речь заходит о локализации функций? Даже с самыми подробными снимками и технологически продвинутыми методами многие термины, использующиеся для описания мозга, все еще остаются очень расплывчатыми[64].
Во второй половине XVIII века итальянский физик и физиолог Луиджи Гальвани в ходе одного опыта обнаружил «выключатель» мозга. Он пропустил электрический разряд через отрезанную лапку лягушки, и ее мышцы начали сокращаться, напоминая странный танец. Тогда Гальвани заявил, что разряд активировал естественное электричество, которое обычно существует в теле и проходит по нервам – замкнутым притокам мозга[65]. Соответственно, родилась мысль, что нервная система человека напоминает электрические провода, а мозг – это батарейка.
Безусловно, опыты с лягушками были увлекательными, но как обстояли дела с мозгом и нервами человека? Неужели электрические разряды активировали и наше поведение? Прошло немного времени, и Гальвани решил попробовать с помощью электричества «оживлять» покойников. Для выполнения этого трюка племянник Гальвани, Джованни Альдини, собирал у гильотины только что отрубленные человеческие головы и пропускал через них электрический ток, под действием которого головы начинали «гримасничать» – открывать и закрывать глаза[66]. Позднее, признав вклад Гальвани в понимание электрической природы нервов, научный мир ввел термин гальванизм. Вскоре все европейское научное сообщество погрязло в бесконечных спорах о роли электричества в поведенческих реакциях человека и возможности с помощью электрического разряда оживлять покойников.
Этот путь развития медицины вдохновил английского поэта лорда Байрона, а также писателей Перси и Мэри Шелли. Они сравнили явление гальванизма с греческим мифологическим героем Прометеем, чье смелое противостояние богам привело к трагическим последствиям. Вдохновленная открытием, Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», который был опубликован в 1818 году. В предисловии она написала, что на создание романа повлияли ее беседы о философии, природе жизни и гальванизме. Главный герой Виктор Франкенштейн так рассказывал о том, как впервые ожило созданное им существо:
Однажды ненастной ноябрьской ночью я узрел завершение моих трудов. С мучительным волнением я собрал все необходимое, чтобы зажечь жизнь в бесчувственном создании, лежавшем у моих ног. Был час пополуночи; дождь уныло стучал в оконное стекло; свеча почти догорела; и вот при ее неверном свете я увидел, как открылись тусклые желтью глаза; существо начало дышать и судорожно подергиваться[67][68].
Итак, первая и, пожалуй, самая выдающаяся история о Франкенштейне родилась в умах пытливых ученых, задавшихся вопросом, какая именно сила побуждает мозг работать. История о том, как интерес к работе нейронных функций породил жанр готического романа, показывает, насколько далеко мы продвинулись в изучении «нейронных функций». Когда Мэри Шелли писала «Франкенштейна», художественные произведения и научные труды, в общем-то, несильно отличались друг от друга. Сегодня, несмотря на то что многие вопросы остаются без ответа, ученые постепенно раскрывают секретный язык нервной системы. Для тех, кто продолжил заниматься этой дисциплиной, прогресс преуменьшил мистицизм контролирующих сил организма. Однако шаги в этой области делались медленно, к тому же порой путешествие прерывалось из-за отвлекающих моментов.