. Подобные решения сильно отличаются от определения профессии у придуманного персонажа (юрист или учитель?) в вымышленной группе. Именно прошлый опыт, ведущий к точке принятия решения, влияет на последующие вероятностные расчеты, независимо от того, решает ли кто-то вынужденную одномоментную задачу, делая специфический заказ баристе из Starbucks, или принимает гораздо более «важное» решение, например при покупке обручального кольца с бриллиантом и преподнесении его дорогому человеку.
Хотя индивидуальная эмпирическая предыстория не всегда подчеркивается в нейроэкономических исследованиях, само понятие существует достаточно давно. В начале XX века Эдвард Толмен, психолог-экспериментатор, который долгое время работал в Калифорнийском университете в Беркли, ввел в область психологии термин «латентное научение». Его эксперименты с крысами и лабиринтами позволили предположить, что крысы не нуждались в вознаграждении, чтобы накапливать информацию об окружающей среде; напротив, они развивали когнитивные карты своих миров, просто исследуя их. Например, в его экспериментах поведение одной группы крыс, которой позволялось исследовать лабиринт без соответствующего вознаграждения, сравнивали с поведением тех животных, передвижения которых в том же лабиринте были предельно мотивированы. В ходе эксперимента выяснилось, что в экспериментах с подкреплением животные в обеих группах действовали примерно одинаково. Как только крысы поняли, что в кормушке появилось желанное вознаграждение, они воспользовались своим предыдущим опытом исследования лабиринта. Как и в истории со Сниффи и Скарри, лабораторные крысы Толмена показали, что они исследуют окружающую обстановку даже без вознаграждения, которое пионеры бихевиоризма называли обязательной составляющей обучения[116]. Тем не менее исследование роли эмпирической предыстории в процессе обучения было отложено на многие годы, пока ученые, исследующие поведение и познание, наконец не объединили свои усилия.
В известной песне рок-группы Talking Heads есть слова «Как я сюда попал?». Они как нельзя лучше подходят нейробиологам, которые изучают вопрос о том, как человеческий мозг приобрел способность выдавать моментальную реакцию и как он к этому пришел. Эксперименты Толмена и действия умных мышек из книги «Где мой сыр?» можно сравнить с тем, как мы нажимаем определенные нейронные кнопки, которые руководят нашими реакциями в специфических ситуациях. Если регулярно нажимать такие нейронные кнопки, то возникнет нейронная сеть – готовый «плейлист» для мозга. Нейронные сети состоят из координированных нейронных реакций на различные стимулы окружающего мира, что, в свою очередь, формирует нашу личность, привычки и мечты о будущем. В отличие от лабораторных сценариев принятия решений наши жизни состоят из сложных вопросов, для решения которых нужны пласты жизненного опыта. Этот жизненный опыт – накопленный человеком капитал контингенций – преобразует нейронные сети мозга, и по мере расчета специфических вероятностей он оказывает влияние как на наши решения, так и на наши действия.
В меняющемся мире жизненный опыт разных людей сильно отличается, но этот опыт, безусловно, влияет на ценности, упрочившиеся в нейронных сетях мозга. И сложно найти аргументы против фразы «И так было всегда» из упомянутой песни рок-группы Talking Heads, что никак не соответствует состоянию нашего мозга в некое конкретное время. Наше нейронное «железо» и связанные с ним функции изменяются каждую секунду, иначе мозг, который остается таким, «каким был всегда», не мог бы адаптироваться к изменяющейся обстановке, и в конечном итоге это не позволило бы человеку бороться за выживание. Чтобы узнать, как прошлый опыт влияет на наши ценности и последующие решения и реакции (на профессиональном жаргоне – на контингенции реакции-результата), мне пришлось обратиться к давним деловым партнерам – крысам. Именно они могли бы подсказать, как основанные на прошлом опыте расчеты контингенций позволяют нам в течение жизни принимать стратегически важные решения и предпринимать необходимые действия. Неудивительно, что крысы не разочаровали.
В прошлом веке ученые создали много умных приборов и придумали множество хитроумных экспериментов, чтобы выяснить, какие способности к обучению есть у разных животных. Вначале подобные опыты ограничивались лабиринтами различной сложности. В свое время в журнале Slate была напечатана увлекательная статья журналиста Даниэля Энгбера, посвященная истории упадка интереса к таким экспериментам с грызунами. Но поначалу такие опыты были весьма популярны, а самый первый лабиринт был придуман в Университете Кларка исследователем Уиллардом Смоллом. Созданный по образцу детально продуманного английского Хэмптон-Кортского садового лабиринта, этот первый экспериментальный лабиринт был огромен, не уступая по размеру помещениям в современных лабораториях (183 × 244 см), и включал открытое пространство в середине и шесть тупиков, которые грызуны должны были исследовать. В тот ранний период Смолла интересовало то, как крысы исследуют лабиринт и чему учатся. Хотя в подобные условия помещались и другие животные, именно крысы стали самыми популярными лабораторными животными, которые стали прочно ассоциироваться с лабиринтами. Пионер бихевиоризма Джон Б. Уотсон из Чикагского университета для своей диссертации проводил эксперименты с грызунами именно в лабиринте. Снизив у одних животных зрение, а у других слух, он хотел выяснить, смогут ли крысы при таких ограничениях ориентироваться в лабиринте, и обнаружил, что животные сохранили эту способность[117].
Существует множество вариантов лабиринтов для грызунов, но сегодня ученые чаще всего используют водный лабиринт Морриса со скрытой платформой, расположенной в специальном секторе круглого бассейна, к которой и должны плыть крысы. Для измерения уровня тревожности была разработана конструкция, известная как приподнятый крестообразный лабиринт, она подвешена над полом и имеет два открытых и два закрытых рукава. Когда на лабораторных сценах стали появляться различные пространственные лабиринты, в 1920-х годах Б. Ф. Скиннер изобрел высокомеханизированную и странную оперантную камеру, или камеру оперантного обусловливания. Учитывая, как быстро крыса обучалась ориентироваться в лабиринте, нажатие на нужный рычаг казалось гораздо более эффективным для оценки обучения с подкреплением, а именно это интересовало Скиннера. Будучи пионером-бихевиористом и бихевиористом-минималистом, Скиннер, несомненно, упрощал поведение крысы в заданиях, которые он придумывал.
Дух первых крысиных лабиринтов и тестов для обучения грызунов сохранился и в моей лаборатории, присутствует он и в конструкции сухого лабиринта, который я разработала на основе пространственного лабиринта Рея Кеснера из Университета Юты[118]. Меня меньше интересует способность крыс преодолевать пространственные препятствия, я сконцентрирована на оценке ошибок в предсказаниях и реакциях на неопределенность – именно это я считаю «главным вопросом» в области поведения. Буду до конца откровенна: моя способность ориентироваться в пространстве оставляет желать лучшего, поэтому неудивительно, что меня не слишком-то радует перспектива связывать пространственное ориентирование с общим интеллектуальным уровнем. Но умение ориентироваться в пространстве очень важно крысам для выживания, поэтому при оценке их способности к обучению такая стратегия действительно уместна.
В качестве примера приведу протокол прохода через сухой лабиринт. Как и первые лабиринты, это большое круглое сооружение составляет примерно 180 см в диаметре. Пол засыпан обычной лабораторной подстилкой – сухой кукурузной стружкой, стены примерно 30 см в высоту, так что животные не могут выпрыгнуть (по крайней мере, не предполагается, что они будут выпрыгивать). По периметру лабиринта расположены восемь небольших пластиковых стаканов, прикрепленных к полу, так что во время эксперимента они фиксированы на месте. В первый день опыта крысам насыпают немного фруктовых колечек в каждый стаканчик и оставляют их на десять минут, чтобы они смогли осмотреться и ознакомиться с устройством.
Хотя крысы, участвовавшие в этом эксперименте, ранее уже были знакомы с фруктовыми колечками, их обеспокоенность новой средой не позволила им тут же наброситься на лакомство. Но даже если животные не притрагивались к еде в первый день, они исследовали новую среду и наверняка отмечали расположение стаканчиков с колечками. На следующий день лакомство было положено не во все стаканчики – так мы дали крысам понять, что источник не всегда наполнен едой. На третий и последний день адаптации лакомство оказалось только в двух стаканах. Следующий день стал решающим днем тестирования, поскольку на сей раз в лабиринте был оставлен только ОДИН стаканчик с едой. Начиная с этого дня и в течение еще трех дней мы с разных позиций на 3 минуты запускали крыс в лабиринт. По ходу опыта мои ассистенты записывали, как быстро животные находили вознаграждение, а также фиксировали дополнительные поведенческие акты, такие как исследование других источников, груминг или попытка сбежать из лабиринта. Как вы можете догадаться, к третьему дню эти крысы «врубались» и, как правило, сразу направлялись к стаканчику с лакомством, не испытывая ни малейших сложностей с ориентированием.
Такое обучение и тестирование крыс – лишь первый шаг к тому, что мне на самом деле интересно изучить. После того как были проведены все тесты, мы поставили еще один эксперимент и запустили грызунов в уже знакомый лабиринт, но убрали из него ВСЕ стаканчики с лакомством. Впервые за крысиную «карьеру» во всем лабиринте не было ни одного фруктового колечка. Конечно, крысы не произносили этого вслух, но в воздухе буквально висело: «Кто украл мои фруктовые колечки?» Так мы создали погрешность предсказания, похожую на ту, с которой сталкивались Хем, Хо, Сниф и Скарри. И здесь возникал вопрос: какой стратегией они воспользуются? Стратегией Хема и Хо – пассивных, нерешительных маленьких человечков? Или стратегией Сниффа и Скарри – изобретательных мышек, трудолюбиво собиравших информацию?