Бутандион добавляют в маргарин для придания ему сливочного запаха. В его состав входит и линолевая кислота (C18H32O2) – основная жирная кислота растительных масел, таких как хлопковое, кукурузное, соевое и рапсовое. Эта же кислота используется для осадки теста и содержится в салатных и кулинарных маслах, хотя сама по себе практически не обладает запахом. Перед добавлением в маргарин линолевую кислоту гидрогенизируют (пропускают через нее пузырьки водорода), чтобы маргарин не стал прогорклым. Правда, из-за гидрогенизации он приобретает белый цвет, а потому в него добавляют каротин, возвращая таким образом желтизну; а сливочный запах придает бутандион. Маргарин является отличным примером того, как молекулярный состав позволяет нам преображать питательный мир.
В детстве, во время Второй мировой войны, когда я жил в Айове, фермеры, занимающиеся молочной продукцией, настаивали на том, что маргарин по вкусу не похож на настоящее сливочное масло. Его продавали неокрашенным и прилагали краситель-каротин в отдельном пластиковом пакете; нужно было разорвать пакет и самостоятельно замешать краситель в маргарин. Такой глупый подход продолжался до тех пор, пока на заключительном банкете конференции молочной индустрии вместо сливочного масла тайно не подали маргарин, а потом сообщили об этом. Но во время банкета на вкус никто и не думал жаловаться! Эта история отлично иллюстрирует то, как внешний вид пищи влияет на вкусовое восприятие; подробнее об этом будет рассказано в главе 15.
Помимо рассмотренных базовых одорированных молекул, в сыре есть и молекулы травы, которой питались коровы. Углубленное исследование этого вопроса было проведено в 2004 году в Сицилии исследователями Стефанией Карпино, Гильермо Личитра, Терри Акри и их коллегами. Собирая материал для своего дипломного исследования, Карпино расположилась на пастбище и тщательно документировала все виды трав, которые коровы ели в течение дня и сезона. Она сопоставила эти данные с пиками РПП/МС полученного из их молока сыра и доказала, что его молекулярный состав варьировался в зависимости от видов трав, входящих в рацион коров, степени их зрелости в разные сезоны. Затем она провела экспериментальную дегустацию сыров, в ходе которой было установлено, что подопытные – то есть потенциальные потребители – по вкусу и запаху различали сыры из молока коров, питавшихся разными травами.
Внешний вид пищи и стереотипы о ней влияют на то, как мы ощущаем ее вкус. Например, маргарин считался совершенно непохожим на сливочное масло, пока его не подали под видом последнего – и никто не заметил разницы.
Личитра возглавляет сицилийский молочный кооператив и использует новейшие достижения науки в прагматичных целях – чтобы делать традиционные сыры с более ярко выраженным вкусом. Подобные опыты проводятся во многих странах; к счастью, в последнее время этим все больше интересуются производители молочной продукции и в США – они надеются таким образом противостоять наплыву безвкусной стереотипной продукции в сетевых супермаркетах и в полной мере продемонстрировать разнообразие вкусов качественной продукции местного производства.
Подводя итоги, можно сказать, что у каждого продукта есть присущая лишь ему молекулярная структура, неоднократно изменяющаяся в процессе приготовления. Сами продукты не обладают вкусом – они только сырье, из которого мозг создает вкусовые ощущения.
Часть IIСоздавая образы запахов
Глава 5Молекулы запаха и их рецепторы
Большинство объяснений того, как системы мозга вовлечены в создание вкусовых ощущений, начинаются с восприятия вкуса. Тем не менее мы уже обосновали, что непосредственно вкусу в формировании вкусовых ощущений отведена второстепенная роль, а главной же составляющей является запах, так что мы сосредоточимся именно на запахе. Это первый шаг к пониманию научного фундамента нейрогастрономии.
Восприятие запаха начинается с попадания одорированных молекул на молекулы обонятельных рецепторов нашего носа. Здесь мы сталкиваемся с еще одним парадоксом. Исследователи уже много лет изучают одорированные молекулы в нашей пище. Компании – производители полуфабрикатов содержат целую армию специалистов по органической химии, которые изучают стимулирующие свойства тысяч химических соединений и пытаются соотнести их с тем, как на них реагируют наши органы чувств. Вот только танго всегда танцуют двое – то есть молекулы запаха и рецепторные молекулы[30], которые их воспринимают. До 1991 года мы ничего не знали о рецепторных молекулах; в более ранних исследованиях просто не учитывалась молекулярная основа обонятельных механизмов, а следовательно, не было и понимания того, как запахи воспринимаются.
С открытием обонятельных рецепторных молекул в 1991 году в танго наконец вступил и второй участник. Несмотря на научный прорыв, к исследованию их взаимодействий научное сообщество приступило далеко не сразу: сначала ученым пришлось решить целый ряд вопросов, связанных с непростым процессом изучения рецепторов. Становление молекулярной кухни, начавшееся в конце 90-х годов, тоже пришлось на период, когда наука почти ничего не знала о рецепторных молекулах, – с этим и связано ее медленное развитие, ведь многие проблемы изучения рецепторов до сих пор не решены. В этом и кроется парадокс. Может показаться, что молекулярная кухня называется так потому, что работает как с молекулами запаха, так и с рецепторными. На самом же деле она фокусируется почти исключительно на молекулах запаха.
У производителей полуфабрикатов целые армии специалистов, которые изучают стимулирующие свойства тысяч химических соединений и пытаются соотнести их с тем, как на них реагируют наши органы чувств.
В отличие от молекулярной кухни, в нейрогастрономии рецепторные молекулы имеют критическое значение для понимания системы восприятия вкусовых ощущений человеческого мозга, а следовательно, нас интересует именно взаимодействие между молекулами запаха и рецепторными молекулами, находящимися в носу. Рассматривая обоняние с этой точки зрения, мы углубляемся в один из подразделов нейрогастрономии, а именно – молекулярную. Это совсем молодая сфера науки, а потому у нее, в отличие от кулинарии и молекулярной кухни, еще не накопился достаточный багаж знаний. Но со временем эти знания будут аккумулироваться, все теснее переплетаться, разжигая как научный интерес, так и человеческий аппетит.
Все в восприятии запахов и вкусовых ощущений начинается с этого завораживающего взаимодействия между молекулами, содержащимися в нашей пище, и теми, из которых состоят клетки наших рецепторов. Как же это происходит?
Представьте себе, что молекула похожа на ключ от входной двери вашего дома. Проведите пальцем по его зазубринам, идеально совпадающим с бороздками внутри замка. Когда вы вставляете ключ в замок, они совмещаются, и вы можете повернуть ключ, убрать язычок замка и отворить дверь. Биологи уже больше столетия используют концепцию «ключ-замок» для описания взаимодействия между двумя молекулами. Когда ключ в замке поворачивается, структура молекулы меняется. Это изменение дает микроскопический толчок соседней молекуле, а та передает его следующей – запускается цепная реакция, и клетка, в которой эти молекулы находятся, выполняет свою задачу.
Молекула запаха состоит из разных видов атомов, придающих ей нерегулярную структуру – эта структурная особенность означает, что в данном случае молекула является ключом. Каков же тогда замок и как он работает? Поиск ответа на этот вопрос был одной из наиболее важных задач современной науки о запахе. Когда ответ был найден, мы наконец-то узнали главное, а именно – как содержащаяся в молекуле запаха информация преобразовывается мозгом в образ запаха.
Процесс активации обонятельного рецептора молекулой запаха лишь одна из составляющих процесса преобразования информации из стимула, воздействующего на рецептор, в сигнал нервной системы. Наиболее очевиден этот процесс в случае зрения – отдельные фотоны активируют молекулы родопсина в зрительных рецепторах сетчатки нашего глаза. Хорошо изучен и процесс активации слуха, где звуковые волны сначала преобразовываются в вибрации во внутреннем ухе, а вибрации затем активируют рецепторные волосковые клетки в улитке. В обоих случаях нам прекрасно известен оптимальный способ стимуляции, и мы можем взять его под строгий контроль.
Эксперименты с обонянием требуют очень много времени, потому что рецепторы человека «замыливаются» при повторной стимуляции. Благодаря этому мы можем привыкнуть даже к очень сильным запахам.
В случае сенсорных стимулов обонятельных рецепторов все не так просто. Мы лишены возможности «увидеть» или «услышать» используемый в опытах стимул. Контролировать молекулы запаха мы можем лишь опосредованно, инструментальными методами. Рецепторные клетки и вовсе скрыты внутри носовой полости – их труднодоступность мешает фиксировать результаты исследования. При повторной стимуляции рецепторы быстро устают (именно поэтому мы быстро привыкаем даже к самой пахучей среде), а потому эксперименты с обонянием не терпят торопливости. Как правило, мы не знаем заранее, какой из тысячи возможных запахов активирует конкретную рецепторную молекулу; чтобы определить это, нужно очень много времени. Даже когда нужный запах наконец обнаружен, мы все равно должны идентифицировать иные запахи, попадающие в обонятельный спектр изучаемой рецепторной молекулы. Хотя исследования проводятся преимущественно на ортоназальном обонянии, которое можно контролировать, распыляя перед носом облачка одорированных частиц, ретроназальное обоняние функционирует по тому же принципу.