Еще одним видом межгломерулярных взаимодействий является возбуждение. Оно может происходить как благодаря непосредственному вовлечению возбуждающих синапсов, которые есть у подвида (перигломерулярных клеток с возбуждающими нейромедиаторами), так и за счет особого типа ингибиции. Такая ингибиция происходит благодаря воздействию возбуждающего аксона перигломерулярной клетки на находящуюся на расстоянии клетку-ингибитор, что вызывает удаленную, но локальную ингибицию митральных и пучковых клеток целевой гломерулы.
В ходе исследования, проведенного в 2003 году Майклом Шипли и его коллегами из Мэрилендского университета, были получены доказательства существования этого механизма взаимодействия. Целью некоторых перигломерулярных клеток становятся достаточно отдаленные гломерулы – в процессе экстракции схемы активации, отражающей образ запаха, происходят сложные взаимодействия по координации сразу нескольких гломерул. Том Клеланд со своими коллегами из Корнеллского университета предположил, что конечной целью этих взаимодействий может быть нормализация возбудимости гломерулярного слоя, благодаря которой он будет сохранять функциональность вне зависимости от интенсивности обонятельной стимуляции.
Пока что мы едва затронули тему подвидов перигломерулярных клеток и различных межгломерулярных взаимодействий. Сейчас самое время упомянуть, что одной из функций этих латеральных механизмов является начальная стадия экстракции пространственных схем для более эффективной дальнейшей обработки в микросистемах следующего порядка, связанных с одним из наиболее загадочных видов мозговых клеток – гранулярных клеток обонятельной луковицы.
Глава 10Усиление образа
Обонятельная луковица отвечает сразу за два этапа обработки запаха. Первый из них, рассмотренный в главе 9, происходит на уровне гломерулярного слоя – там образуется схема, обозначающая молекулы запаха, и идут процессы оптимизации отношения сигнал/шум и латеральные взаимодействия, являющиеся начальной стадией обработки образа запаха. Затем образ передается на следующий структурный уровень обонятельной луковицы, и начинается второй этап обработки. Уровни связаны между собой крупными митральными клетками и их более компактными клетками-компаньонами – пучковыми клетками (см. рис. 7.1). Дендриты этих клеток, расположенные в гломерулярном слое, вбирают в себя обработанный сигнал и передают его на следующий уровень по апикальному дендриту, а впоследствии отправляют его в обонятельную кору по своему длинному аксону. Прежде чем они смогут передать сигнал за пределы обонятельной луковицы, ему предстоит пройти вторую стадию обработки. Это необходимо потому, что вставочные нейроны гломерулярного слоя имеют ограниченный охват – они могут воздействовать на образ запаха исключительно через те гломерулы, к которым восходит их аксон.
Вторая стадия обработки состоит из минимум двух взаимодействий. Во-первых, необходимо скоординировать все гломерулярные модули. Это происходит благодаря так называемым вторичным дендритам митральных и пучковых клеток; они раскидываются на немалое расстояние, ветвятся и дотягиваются до многих близлежащих гломерулярных модулей. Напрямую между собой этот вид дендритов не взаимодействует; посредничество осуществляется особым видом промежуточных[49] нейронов – гранулярными клетками (см. рис. 7.1). Именно гранулярные клетки обеспечивают второй тип взаимодействий – латеральную ингибицию между скоординированными гломерулярными модулями. На каждую митральную клетку приходится порядка ста гранулярных, что обеспечивает действительно мощную ингибицию. Следовательно, гранулярные клетки являются ключом к скоординированной ингибиторной обработке, ведь именно благодаря им образ запаха преобразовывается в формат, подходящий для передачи в обонятельную кору для следующей стадии обработки. Как же происходит эта смена формата?
Я впервые столкнулся с гранулярными клетками в Оксфорде, когда проходил аспирантуру под руководством Чарльза Филлипса и изучал физиологические реакции клеток обонятельной луковицы. Наиболее значимым из моих открытий в ходе того исследования стало то, что митральные клетки связаны крайне прочными и долгоиграющими процессами латеральной ингибиции; эту закономерность одновременно с нами выявили исследователи в двух других лабораториях.
Вот только была одна проблема – на уровне дендритов митральных клеток обонятельной луковицы не было ингибиторных клеток; там имелись лишь любопытные мелкие гранулярные клетки с колючими на вид, покрытыми шипиками дендритами без аксонов. Клетки, не имеющие аксонов, вообще сложно отнести к категории нервных, и еще сложнее предположить, что именно они могут выполнять функции промежуточных нейронов при митральных клетках. Несмотря на крайне сомнительные характеристики, гранулярные клетки расположились именно там, где мы надеялись обнаружить промежуточные нейроны; мы пришли к выводу, что они, возможно, активируются ответвлениями (коллатералями) аксона митральных клеток и ингибируются центральным, апикальным дендритом, затесавшимся в хитросплетение дендритов базальных.
После защиты кандидатской я приступил к следующему этапу обучения, уже под руководством Вилфрида Рэлла в Национальном институте здравоохранения США (НИЗ) в городе Бетесда, штат Мэриленд. В те годы Рэлл только начинал свою первопроходческую деятельность в сфере нейроинформатики – он создавал первые компьютерные модели нервных клеток и с их помощью выявлял загадочные свойства дендритных ответвлений. Ему пришлось настаивать на своем вопреки давлению оппонентов, полагавших, что дендриты не участвуют в обработке информации и роль их сводится преимущественно к обеспечению клеток питательными веществами. Мы решили, что митральные и гранулярные клетки обонятельной луковицы могут стать прекрасным подспорьем в обосновании важной роли дендритов в информационных процессах, и тогда я выдвинул гипотезу об их участии в процессе преобразования и обработки запахов.
Мы решили создать цифровые модели митральной и гранулярной клетки и воспроизвести с их помощью результаты моего прошлого исследования. К сожалению, компьютерное моделирование не дало нам новых сведений о том, как взаимодействуют эти виды клеток. К тому моменту у меня оставалось лишь несколько месяцев до перевода в следующую лабораторию. Мы понимали, каким образом гранулярные клетки обеспечивают ингибицию митральных, но вопрос оставался открытым – что же запускало процесс латеральной ингибиции? Чем больше мы работали над этой проблемой, тем отчетливее понимали, что возбуждение дендритов гранулярных клеток начинается в том же тонком слое, где затем наблюдается ингибиция дендритов митральных клеток. Что же могло инициировать этот процесс?
Когда мы в очередной раз обсуждали проблему нашего исследования, нам пришла в голову одна крайне интересная мысль: а что, если возбуждение дендритов гранулярных клеток вызывается теми же дендритами митральных клеток, которые им предстоит ингибировать? Идея казалась безумной, но к тому моменту иные идеи иссякли окончательно. Из классических пособий по анатомии я знал, что подобная взаимосвязь между дендритами беспрецедентна, и мы с Рэллом прекрасно понимали, что в литературе по физиологии такое функциональное взаимодействие тоже не упоминается. В тот же день, 26 августа 1964 года, Рэлл внес нашу гипотезу в свой зеленый лабораторный журнал. Он написал, что, вероятно, между митральными и гранулярными клетками происходят «дендро-дендритные взаимодействия», которые и приводят как к аутоингибиции, так и к латеральной ингибиции митральных клеток. Мы также предположили, что механизм этого взаимодействия аналогичен латеральной ингибиции в сетчатке глаза. Мне вскоре предстояло покинуть Бетесду и продолжить свои научные изыскания в другой лаборатории, в Швеции; но сколько-то времени у нас в запасе еще оставалось.
Проверить нашу гипотезу можно было только с помощью электронного микроскопа, который позволил бы нам увидеть и доказать существование таких синаптических связей. Помог случай – в соседнем здании лабораторного комплекса НИЗ работали Том Риз и Милтон Брайтман. Я подтолкнул их к поиску синапсов между митральными и гранулярными клетками, и вскоре те были обнаружены. Когда Рэллу показали необычное размещение этих синапсов – они располагались бок о бок и имели противоположную направленность, – его постигло еще одно откровение. Он тут же сообщил Ризу и Брайтману, что именно такие синапсы и должны обеспечивать взаимодействия согласно нашей с ним гипотезе. Я считаю это прекрасным примером того, как быстро подготовленный разум ориентируется при получении неожиданных данных.
Следующее «ага!» кричал уже я, когда получил в Стокгольме письмо с новостью об их открытии. К тому моменту два других исследования уже показали наличие в обонятельной луковице некоей «нетипичной конфигурации», но без физиологического обоснования и моделирования вычислить функции этого синаптического соотношения не представлялось возможным, ведь противоположная направленность синапсов казалась абсурдной.
Пребывая в радостном возбуждении, мы вчетвером составили отчет о результатах нашего исследования и отправили его в ведущий журнал Science. Полученная нами рецензия гласила: «В публикации отказано: не представляет общенаучного интереса». Мы могли бы потребовать пересмотра решения, но это шло вразрез с тактичным характером Вила. Он просто нашел другой научный журнал, где нашу статью приняли.
За первой публикацией последовала и вторая, в которой мы подробно описали создание цифровой модели клеточного взаимодействия. Моделирование позволяло подчеркнуть фиксированную последовательность аутоингибиционных взаимодействий – они неизменно начинаются с возбуждения гранулярной клетки и заканчиваются ингибицией в результате обратной связи. В отличие от латеральной ингибиции, в которую вовл