Chandra или XMM столь же качественные рентгеновские изображения, как сегодня, не удавалось, – рассказывает Дэвид Бакли из Южноафриканской астрономической обсерватории в Кейптауне. – Мы знали только, что в некоторой области неба есть рентгеновские источники и отыскать их оптические аналоги совсем непросто. Некоторые даже использовали старомодные фотографические пластинки, когда искали на небе голубые и переменные объекты”.
Одним из первых источников рентгеновского излучения, идентифицированных как двойная система, стал Лебедь X-1. Свое название он получил в соответствии с принятым тогда общим правилом: открытые источники рентгеновского излучения астрономы называли по имени созвездия, где источник был обнаружен, и добавляли букву X, указывающую на то, что это рентгеновский источник. Постепенно от этого правила отказались, поскольку обнаруженные источники исчислялись миллионами. Сегодня неожиданные вспышки рентгеновского излучения ищут такие современные детекторы, как INTEGRAL, Swift, NICER и Maxi (прибор для мониторинга рентгеновского изображения всего неба, разработанный японскими учеными и установленный на Международной космической станции).
Помимо LMXB бывают и нейтронные звезды другого типа, излучающие в рентгеновском диапазоне. Если в двойной системе компаньон нейтронной звезды имеет промежуточную массу, систему называют рентгеновской двойной системой промежуточной массы, или IMXB (Intermediate Mass X-ray Binary). Если масса звезды-компаньона превосходит массу Солнца более чем в десять раз, мы имеем дело с рентгеновской двойной массивной системой, или HMXB (High Mass X-ray Binary). В последнем случае одна из звезд взрывается сверхновой и становится нейтронной звездой. Хотя ее компаньон – чрезвычайно яркая звезда, испускающая звездный ветер благодаря давлению излучения, вещество, захваченное нейтронной звездой, не образует аккреционный диск, а прямо оседает на ее поверхности. В рентгеновское излучение преобразуется энергия ветра. HMXB можно увидеть и в оптическом диапазоне, где доминирует излучение массивной звезды. Однако не все HMXB содержат нейтронную звезду: иногда на ее месте может быть черная дыра.
Однако системы LMXB, пожалуй, самые необычные, поскольку считается, что именно они были прародителями сверхбыстрых и очень, очень старых пульсаров9.
По мере нарастания аккреции вещество звезды-компаньона, перетекающее на нейтронную звезду, приводит к ослабеванию ее магнитного поля. Когда оно уменьшается до 108 гауссов, аккрецируемое вещество оказывается так близко к поверхности, что, передавая угловой момент пульсару, может ускорить его вращение настолько, что оно станет миллисекундным. По окончании аккреции рентгеновское излучение, источником которого был аккреционный диск, прекращается: теперь это опять миллисекундный радиопульсар в стадии так называемого раскручивания. Комбинация ослабленного магнитного поля и ускоренного вращения приводит к увеличению времени жизни пульсара. Видимый пульсар существует от десяти до ста миллионов лет, а возраст такой нейтронной звезды – более миллиарда лет, сопоставимо с возрастом Вселенной. Привет тебе, дважды умерший – “зомби в квадрате” – остаток ядра некогда массивной звезды, превратившийся в очень старый радиопульсар.
Тем временем компаньон миллисекундного пульсара превращается в белый карлик. Либо он остается белым карликом, либо сильный ветер высокоэнергетических частиц пульсара уносит прочь вещество соседней звезды. Такое происходит, если пульсар нагревает своего компаньона до температуры, вдвое превышающей температуру поверхности Солнца, и постепенно разрушает его. Именно поэтому некоторые пульсары не входят в двойные системы, а существуют “в гордом одиночестве”. Их называют “черными вдовами” по аналогии с самками одноименных пауков, пожирающими своих супругов. К таким пульсарам относится, например, первый миллисекундный пульсар, открытый Баккером. На данный момент обнаружено восемнадцать таких пульсаров в Млечном Пути и еще несколько в шаровых звездных скоплениях, принадлежащих нашей Галактике[16]. У некоторых из них компаньонов нет, тогда как спутниками других являются звезды чрезвычайно малой массы. Именно такого типа систему обнаружил Басса: масса белого карлика, компаньона пульсара, составляла всего 2 % от массы Солнца. Очевидно, что большую часть массы он потерял из-за соседства с очень “голодным” пульсаром. Когда спутник пульсара имеет чуть большую массу, но все еще явно сражается за свое выживание, пульсар, опять используя аналогию с пауками, называют “австралийской вдовой”10.
Тогда как миллисекундные пульсары обычно излучают радиоволны, некоторые из них не могут решиться на что-то определенное и периодически излучают то в радио-, то в рентгеновском диапазоне. Такие странные создания получили название “переходные миллисекундные пульсары”. В 2008 году группа из Амстердамского университета под руководством Энн Арчибальд с помощью телескопа Green Bank в Западной Вирджинии открыла новый радиопульсар, известный сейчас как PSR J1023 + 0038. Когда Энн и ее коллеги обратились к архивным данным, стало ясно, что за восемь лет до того ровно в этом же месте видели в оптическом диапазоне нейтронную звезду, окруженную аккреционным диском. Они начали непрерывное наблюдение нового пульсара с помощью телескопов Lovell, Arecibo, Green Bank и Westerbork. Пульсар был виден до июня 2013 года, а затем внезапно исчез. Через несколько недель снова появился аккреционный диск и звезда опять стала видна в оптическом диапазоне. Благодаря аккреционному диску она была очень яркой. Позднее наблюдения, выполненные в обоих участках спектра с помощью космических рентгеновских обсерваторий и оптических телескопов на Земле, показали, что система попеременно переключается с “радиовещания” на другие частоты, излучая в рентгеновском диапазоне, когда происходит аккреция вещества и пульсар становится виден в участке спектра, доступном невооруженному глазу11.
Очень редко такие двойные системы состоят из двух пульсирующих нейтронных звезд. К настоящему моменту известна только одна такая система – двойной пульсар (PSR J0737–3039A/B). Хотя всплески более медленного пульсара, так называемого пульсара В, не фиксировались с 2008 года, его миллисекундный партнер А все еще благополучно излучает радиоволны12.
Другой механизм, приводящий даже к еще более мощному излучению, связан с магнитным полем некоторых нейтронных звезд. Напряженность их магнитного поля столь велика, что они, по-видимому, являются самыми сильными магнитами во всей Вселенной. По мере затухания магнитного поля эти нейтронные звезды излучают рентгеновские и гамма-лучи, которые можно наблюдать. Такие нейтронные звезды называют магнетарами, и до сих пор ученым удалось обнаружить только около тридцати магнетаров.
“Магнетары были открыты благодаря счастливому стечению обстоятельств”, – рассказывает Хриса Кувелиоту, профессор астрофизики физического факультета Университета Джорджа Вашингтона в Вашингтоне, округ Колумбия. Ее исследования магнетаров начались еще в 1979 году, хотя тогда она сама, магистрантка из Греции в Институте физики Общества Макса Планка в Мюнхене, об этом и не подозревала. В то время Кувелиоту занимала загадка так называемых гамма-всплесков.
Кувелиоту решила, что ее диссертация будет посвящена очень мощным вспышкам гамма-излучения, идущим из глубин космоса. Впервые такие вспышки наблюдались в июле 1967 года. Два американских разведывательных спутника Vela предназначались для регистрации гамма-излучения при взрыве атомных бомб. Находясь на земной орбите, они должны гарантировать, что никто не нарушает соглашение о запрете испытаний ядерного оружия в космосе. Неожиданно спутники зафиксировали короткую, длительностью всего две десятых секунды, вспышку гамма-излучения. Сигналы разительно отличались от возможных сигналов изготовленного на Земле ядерного оружия. Через три минуты вспышки прекратились. Затем, через четырнадцать с половиной часов, был отмечен более слабый пучок рентгеновского излучения, исходящий из того же места в далеком космосе. Благодаря атмосфере Земли никто, кроме ученых, работающих на космическую программу правительства Соединенных Штатов, не заметил этих всплесков. Откуда они взялись? Американские военные встревожились.
Позднее сходные всплески зафиксировали и другие детекторы. Всего обнаружили и изучили шестнадцать всплесков – сначала строго секретно в Лос-Аламосской национальной лаборатории министерства энергетики США, организованной во время Второй мировой войны для разработки ядерного оружия. Наконец в 1973 году ученые из Лос-Аламоса опубликовали результаты своих исследований. Они утверждали, что это внегалактические сигналы, не имеющие явно никакого отношения к земному ядерному оружию. Хотя все еще никто не понимал, что является источником этих вспышек, Кувелиоту в своей диссертации высказалась в пользу самой популярной в то время теории: вспышки возникают на финальной стадии эволюции сверхмассивной, быстро вращающейся звезды при ее коллапсе в черную дыру. Эта теория по-прежнему согласуется с современными представлениями, когда речь идет о длинных, длящихся более двух секунд, гамма-всплесках. Однако, как было показано в 2017 году, гораздо более кратковременные гамма-всплески, так называемые короткие, вызваны слиянием двух нейтронных звезд.
Из-за чрезвычайной яркости гамма-всплесков многие ученые вначале полагали, что их источник находится где-то недалеко, в пределах нашей Галактики. Это значило, что наблюдаемая мощность гамма- и рентгеновского излучения должна быть чуть ниже предела Эддингтона, определяющего максимальную светимость очень горячих и ярких звезд, которая достигается при равновесии направленных внутрь гравитационных сил и направленного наружу давления излучения.
А затем произошло нечто удивительное. 5 марта 1979 года мощная волна гамма-излучения накрыла на околосолнечной орбите две советские автоматические межпланетные станции “Венера-11” и “Венера-12”. За несколько месяцев до этого от обеих станций отделились спускаемые аппараты, вошедшие в кислотную, токсичную атмосферу нашей ближайшей планеты-соседки Венеры, после чего станции продолжили движение вокруг Солнца. Русские астрономы видели, что показания приборов, регистрирующих галактическое излучение, вполне обычные – около ста всплесков в секунду. Но, когда ранним вечером по московскому времени волна гамма-излучения накрыла станции, уровень радиации подскочил невероятно: приборы, регистрировавшие свыше двухсот тысяч импульсов в секунду, зашкаливало.