Волна на этом не остановилась. Через одиннадцать секунд она достигла Helios 2, аппарата НАСА, тоже двигавшегося по орбите вокруг Солнца. Затем, перекатившись через Венеру, накрыла американский зонд Pioneer Venus Orbiter. Следующей была Земля. Поток излучения достиг детекторов на трех спутниках Vela министерства обороны США, X-ray Einstein Observatory, первого рентгеновского телескопа, позволявшего получать изображение источника, и советского спутника “Прогноз-7”. Наконец, двигаясь дальше по Солнечной системе, он достиг зонда International Sun-Earth Explorer (ISEE-3), предназначенного для изучения магнитных полей вокруг Земли. К счастью, годом ранее, незадолго до запуска ISEE-3, ученые, изучающие гамма-всплески, попросили добавить туда пару детекторов гамма-излучения – эта область исследований была еще совсем новой, и такие детекторы на данном зонде не предполагались. Их запрос удовлетворили13.
Когда начали поступать данные с ISEE-3, Кувелиоту работала у себя за столом в Институте внеземной физики имени Макса Планка. До защиты диссертации у нее оставалось около года. Сначала, вспоминает Кувелиоту, все думали, что этот невероятный пик связан с инструментальной ошибкой, но, когда появились данные других спутников, стало ясно, что ошибки нет.
Вспышка длилась долю секунды, однако волна гамма-излучения, прокатившаяся по Солнечной системе, оказалась в сто раз мощнее зарегистрированной спутниками Vela в 1967 году. Кувелиоту и ее коллеги были потрясены. Все обнаруженные до этого гамма-всплески считались результатом единовременного катастрофического события – взрыва, при котором их источник исчезает. Но теперь, 5 марта 1979 года, после первого пика периодические пульсации наблюдались еще секунд сто. Периодичность этого “хвоста” была особенно удивительна. “Периодичность означала, что у компактного объекта есть поверхность. Проще говоря, что это нейтронная звезда”, – рассказывает Кувелиоту. Вскоре были зарегистрированы еще и другие, хотя и менее интенсивные, всплески. Но направление сигналов явно указывало на одно и то же место на небе, а их описание не укладывалось ни в одну из известных теорий происхождения гамма-всплесков. Кувелиоту вспоминает: “Все казалось настолько загадочным, что мы попросту растерялись”. Некоторые ученые даже предположили, что первый всплеск вызван столкновением кометы с нейтронной звездой.
Вскоре после этого удалось локализовать источник события, произошедшего 5 марта. Он находился в Большом Магеллановом Облаке и был связан с молодым остатком сверхновой N49, возраст которого составлял около пяти тысяч лет. Это значило, что источник оказался примерно в тысячу раз дальше, чем исходно предполагалось на основании его блеска, а светимость этого источника по крайней мере в миллион раз превосходила предел Эддингтона. Из-за периодичности импульсов “хвоста” черная дыра таким источником быть не могла. Но был остаток сверхновой. Могла ли являться источником нейтронная звезда? В то время было только известно, что пульсары – это быстро вращающиеся нейтронные звезды, испускающие радиоволны. Однако наблюдавшийся на Земле всплеск рентгеновского излучения был слишком мощным, чтобы его можно было соотнести с радиопульсаром. Кроме того, получалось, что нейтронная звезда, если это действительно она, должна находиться не в центре остатка сверхновой, а где-то с краю. Это указывало на то, что при рождении ее выбросило из места расположения звезды-предшественницы со скоростью порядка тысячи километров в секунду – гораздо быстрее, чем любой из известных тогда пульсаров.
В течение следующих четырех лет советские ученые из Физико-технического института в Ленинграде (сейчас это Физико-технический институт имени А. Ф. Иоффе в Санкт-Петербурге) зарегистрировали еще шестнадцать всплесков, идущих из того же места, – одни сильнее, другие слабее, но все менее заметные и более короткие, чем вспышка 5 марта. Еще несколько подобных событий, которые следовали группами из трех разных мест на небе, зарегистрировали позднее. Никто толком не знал, что это такое.
Кувелиоту закончила аспирантуру в 1981 году. Год она преподавала в Афинском университете, а затем получила работу в Центре космических полетов имени Джорджа Маршалла, находящегося в ведении НАСА. Однако гамма-всплески и таинственная вспышка 1979 года не выходили у нее из головы. В 1986-м на астрономической конференции в Тулузе зашел разговор о событиях 1979 года, и она тоже решила высказаться. Тогда большинство ученых считало, что это что-то вроде гамма-всплесков, но Кувелиоту думала иначе. Гамма-всплески были темой ее диссертации, и она не сомневалась, что это не они.
Единого мнения не было, но на конференции “виновников” решили назвать источниками мягких повторяющихся гамма-всплесков (SGR, Soft Gamma Repeater). Дело в том, что энергия этих всплесков оказалась не столь велика, как у обычных гамма-всплесков, и поскольку эти события повторялись, они явно не были связаны с какими-то катастрофическими явлениями. Все больше ученых соглашались с тем, что гамма-всплески гораздо мощнее и берут начало где-то в глубоком космосе, за пределами нашей Галактики, a SGR находятся гораздо ближе, в плоскости Млечного Пути.
Время от времени продолжали происходить выбросы энергии из источника, наблюдавшегося впервые 5 марта 1979 года. Похоже, что последний такой выброс замечен в мае 1983 года. Кувелиоту намеревалась раскрыть эту загадку, но проблема заключалась в том, что еще не существовало инструментов для зондирования этих таинственных всплесков и не было аппаратуры высокого разрешения, позволяющей определить место, откуда они исходят. Больше десяти лет Кувелиоту не оставалось ничего другого, как ждать. Она не знала, что два физика-теоретика приближаются к раскрытию этой тайны с другой стороны. Скоро их пути пересекутся.
В 1979 году, когда волна гамма-излучения накрыла Землю, Крис Томпсон был еще школьником и, в отличие от Кувелиоту, даже не подозревал о существовании гамма-всплесков. Но в 1986 году Томпсон вместе с Робом Дунканом заинтересовался магнитными полями радиопульсаров. Тогда он был магистрантом Принстонского университета, а Дункан недавно защитил там же диссертацию. Молодые люди хотели выяснить, каким образом магнитные поля замедляют вращение пульсаров и почему некоторые пульсары намагничены сильнее, чем другие.
Важная подсказка содержалась в работе о новообразованных нейтронных звездах, незадолго до этого опубликованной Адамом Берроузом из Университета Аризоны и Джеймсом Латтимером из Университета Стоуни-Брук штата Нью-Йорк. Они разработали компьютерную модель, показывавшую, что плотная жидкость внутри еще горячей нейтронной звезды циркулирует благодаря конвекции в течение нескольких секунд, прежде чем начинает остывать. Все звезды обладают слабыми магнитными полями и передают нейтронной звезде лишь некоторое остаточное магнитное поле. Однако, как предположили Дункан и Томпсон, иногда оно может стать гораздо сильнее. Это произойдет не с каждым пульсаром, а только с теми, что чрезвычайно быстро вращались при рождении – запуская так называемый динамо-эффект. Этот эффект проявляется и у нашей Земли, и у большинства звезд. Он запускается, когда электропроводящая жидкость или газ движется циклично: горячие области поднимаются наверх, затем остывают и опускаются снова вниз, совсем как в закипающей в кастрюле воде. Магнитное поле зависит от заряженных частиц в жидкости, поэтому оно вытягивается и усиливается при ее движении.
На этой стадии внутри нейтронной звезды все еще обычная, а не сверхтекучая жидкость, которая образуется только тогда, когда звезда существенно остывает. Эта горячая нейтронная жидкость мечется вверх и вниз со скоростью несколько тысяч километров в секунду. Если, утверждали Дункан и Томпсон, начальное магнитное поле новорожденной нейтронной звезды достаточно сильное и вращается она достаточно быстро, совершая более двухсот оборотов в секунду, постепенно запускается динамо-эффект. Хотя все разворачивается в течение нескольких секунд, этого оказывается достаточно, чтобы увеличить магнитное поле, которое становится больше 1015 гауссов. Это в тысячу раз больше магнитного поля типичной нейтронной звезды, вращающейся слишком медленно для того, чтобы началась конвекция и запустился динамо-эффект. Напомню, что магнитное поле Земли всего примерно полгаусса, а магнитика на холодильнике – около ста гауссов. Магнитное поле пятен на Солнце – самых намагниченных его мест – порядка трех тысяч гауссов. Чем сильнее начальное магнитное поле, тем быстрее умирает нейтронная звезда: со временем она начинает вращаться слишком медленно, чтобы излучать радиоволны. Угасание пульсара занимает от десяти до ста миллионов лет.
Томпсон и Дункан решили дополнительно исследовать, как проходит процесс увеличения магнитного поля. “Мы задумались о том, как такие поля должны проявляться, можем ли мы обнаружить их «визитную карточку»”, – рассказывает Томпсон. В 1992 году они опубликовали произведшую эффект разорвавшейся бомбы статью, где, чтобы описать эти странные объекты, ввели термин “магнетар”, или “намагниченная звезда”. Магнетары – нейтронные звезды, магнитное поле которых сильнее, чем у любого другого объекта во Вселенной. Томпсон и Дункан вычислили, что верхний предел магнитного поля, которое подобные звезды могут создавать и удерживать, – порядка 1017 гауссов. Когда этот предел превзойден, ядерная жидкость внутри звезды начинает перемешиваться и поле слабеет.
Кроме того, теоретики исследовали влияние сверхсильного магнитного поля на вращение нейтронной звезды. Вскоре стало понятно, что это поле быстро и очень существенно замедляет вращение магнетара: в конечном итоге практически вся энергия вращения переходит в энергию магнитного поля. Хотя при рождении магнетар должен вращаться быстрее обычного пульсара, скорость его вращения стремительно падает. При поле в 1015 гауссов период магнитных волн, забирающих на себя энергию вращения, примерно через п