Нейтронные звезды. Как понять зомби из космоса — страница 47 из 64

ит он, когда мы с ним встречаемся уже в Тусоне, штат Аризона. – Температура может опускаться и до -73 градусов Цельсия, видимость падает практически до нулевой, а освещения никакого нет. Думаю, это может быть довольно страшно. Но я, к счастью, бывал там летом, и мне никогда не приходилось сталкиваться с подобным”.

В конце концов он добрался до телескопа и через несколько часов работы, когда ветер стал утихать, вернулся на станцию, которая находилась примерно в одном километре оттуда. Станция – это свой особенный маленький мир, где есть тренажерный зал, языковые классы, стол для пинг-понга и спутниковый интернет (который работает только несколько часов в день), чтобы не терять связи с цивилизацией. Снег там никогда не тает, и каждый год выпадает еще около двадцати сантиметров. Потом он оседает под собственным весом, и по этой причине здание площадью 7400 квадратных метров было поставлено на несколько опорных колонн, благодаря которым оно никогда не будет погребено под снегом. Попасть сюда отнюдь не просто: Марроне сначала коммерческим рейсом летел из США в Новую Зеландию, в город Крайстчёрч, а затем садился на небольшой военно-транспортный винтовой самолет ВВС США LC-130 “Геркулес”, установленный на лыжи, и перелетал на станцию “Мак-Мердо” на острове Росса (где приходилось ожидать вылета в течение ночи или дольше, в зависимости от погоды), а оттуда уже к Южному полюсу.

Это был пятый визит Марроне в Антарктиду, но он “опускался на дно мира” не только ради острых ощущений. Хотя телескоп SPT существует с 2007 года, именно Марроне в 2010-м пришла в голову идея подсоединить его виртуально в качестве составной части к нескольким другим наземным антеннам, чтобы вместе они образовали массив телескопов планетарного масштаба – телескоп горизонта событий EHT. Термин “горизонт событий” относится к воображаемой границе сферической области вокруг черной дыры, из-за которой выйти наружу ничто, даже свет, уже не может. Черная дыра, как считается, остается после того, как массивная звезда (более массивная, чем те, из которых получаются нейтронные звезды) оказывается раздавлена собственной гравитацией. В черной дыре вся масса сосредоточена в очень маленькой области в центре, называемой сингулярностью (в случае вращающейся черной дыры эта сингулярность представляет собой кольцо).

10 апреля 2019 года сообщество EHT вошло в историю, опубликовав снимок, на котором изображен словно бы красновато-оранжевый пончик на черном фоне. Хотя снимок был расплывчатым и казался не очень впечатляющим, это было первое в истории изображение тени сверхмассивной черной дыры в центре самой большой галактики Мессье 87 (M87) в близлежащем скоплении галактик в созвездии Дева, снятое с высоким разрешением. (Я узнала эту новость, когда подключилась к интернету, сидя в бункере – изолированной комнате – рядом с телескопом MeerKAT в Южной Африке, так что для меня лично это колоссальное событие стало еще грандиознее.) Эта черная дыра, в 6,5 миллиарда раз более массивная, чем Солнце, находится на расстоянии 55 миллионов световых лет от нас. Ученые на основании общей теории относительности Эйнштейна долгое время полагали, что черная дыра должна быть похожа на тень, отбрасываемую на яркий фон светящегося газа. Теперь они получили первое тому доказательство4.

Гравитация искривляет свет, а эффект Доплера увеличивает частоту и интенсивность света с той стороны черной дыры, которая вращается по направлению к наблюдателю, то есть к нам. Мы не можем видеть того, что находится позади черной дыры, но большая часть света, который должен был бы прийти к нам оттуда, линзируется, то есть огибает черную дыру. Это означает, что очень небольшое количество света может прийти к нам непосредственно из пространства перед черной дырой, потому что любой прямой свет отклонится и уйдет из нашего поля зрения. “Свет перед черной дырой в основном перенаправляется вокруг нее под действием гравитации или захватывается горизонтом событий”, – говорит Марроне.

Поскольку черная дыра находится очень далеко, чтобы получить ее изображение, ученым понадобился огромный сверхчувствительный инструмент с очень высоким разрешением. И гигантский телескоп EHT – именно такой инструмент. Он использует принцип сверхдлиннобазисной интерферометрии, который реализуется путем синхронизации нескольких радиотелескопов, разбросанных по всему земному шару. Используя вращение нашей планеты, эта система телескопов становится инструментом размером с Землю с разрешением 20 угловых микросекунд, который способен регистрировать волны с длиной до всего лишь 1,3 миллиметра5.

Марроне думал, что тарелка SPT, установленная в Антарктиде, придаст телескопу EHT мощный импульс, особенно при наблюдениях центра Млечного Пути и его сверхмассивной черной дыры Стрелец A* (Sgr А*). У Марроне сложились особые отношения с этой черной дырой – ей была посвящена его диссертация. В ноябре 2011 года он подал заявку в Национальный научный фонд, в чьем ведении находится телескоп SPT, с просьбой о предоставлении гранта. Он объяснил, что радиотелескоп сыграет ключевую роль в получении изображения нашей собственной черной дыры, поскольку удвоит разрешение системы телескопов EHT. Действительно, наш галактический центр лучше всего виден из Южного полушария, а южнее Южного полюса ничего не бывает. Небольшой телескоп, базирующийся в Антарктиде, может постоянно наблюдать центр нашей Галактики.

Ученым давно известно о существовании черной дыры Стрелец А* и месте ее обитания – центре Млечного Пути. В 1931 году Карл Янски уловил радиосигнал, который пришел с направления, подозрительно близкого к направлению на созвездие Стрелец. Поэтому радиоисточник был назван “Стрелец A” (Sgr А). А когда астрономы идентифицировали точечный источник в составе радиоисточника Sgr А, название трансформировалось в “Стрелец A*” (Sgr А*). На протяжении многих лет ученые предполагали, что наличие в сигнале этой составляющей – явный признак присутствия там черной дыры, которая излучает при поглощении окружающего вещества. За последние десятилетия несколько групп ученых опубликовали результаты как теоретических, так и экспериментальных исследований. В этих статьях на основании измерений скоростей звезд вблизи центра Млечного Пути уточнялись предельные значения радиуса сферы, в которой сосредоточена основная масса центральной части Галактики6.

В 2002 году группа под руководством Райнхарда Гензеля из Института внеземной физики Общества Макса Планка опубликовала статью, основанную на десятилетнем исследовании движения звезд вокруг галактического центра, особенно звезды под названием S2. Из этих данных следовало, что S2 обращается вокруг очень компактного и яркого центрального радиоисточника диаметром около шестидесяти миллионов километров, который был слишком компактным, чтобы представлять собой очень плотное скопление звезд. Это стало еще одним косвенным свидетельством того, что источником, по всей вероятности, является некая среда с экстремальными свойствами, окружающая сверхмассивную черную дыру, расположенную на расстоянии примерно двадцать шесть тысяч световых лет от Земли7.

Марроне в 2011 году потребовалось полгода, чтобы получить одобрение заявки на грант, после чего он занялся разработкой и созданием нужного оборудования для небольшого радиотелескопа, необходимого для наблюдения черных дыр. В частности, он разработал когерентный приемник для измерения электрического поля любого источника, на который направлен телескоп. По словам Марроне, приемник похож на “очень крутое радио, работающее при температуре четыре кельвина”, а это означает, что он почти такой же холодный, как межзвездное пространство, так что все шумы сведены к минимуму. И именно этот приемник вместе со сверхточными атомными часами Марроне использует каждый раз, когда работает с радиотелескопом.

Хотя галактика M87 не видна из Антарктиды, наблюдение с помощью телескопа SPT другого источника в небе – квазара 3С279 – значительно повысило уверенность астрономов в окончательном результате. “В противном случае, я думаю, мы бы намного больше нервничали”, – говорит Марроне. В шести статьях, вышедших примерно в то же время, что и фотография “пончика”, приведено значение массы центральной черной дыры M87 и направление ее вращения. По словам Марроне, у них теперь появились первые представления о ее ближайшем окружении, что позволит астрономам лучше понять, что представляют собой релятивистские струи (джеты) из черных дыр.

За многие годы наблюдений центра галактики M87 восемь телескопов обсерватории EHT собрали также детальные данные по нашей черной дыре Стрелец А*.

В сочетании с данными телескопа ALMA, расположенного на вершине плато Чахнантор в Чили, эти результаты вскоре должны позволить исследователям получить изображение нашей собственной черной дыры, а точнее, ее тени[30]. С помощью этих изображений ученые надеются узнать больше об окружающей сверхмассивные черные дыры среде – сверхгорячем газе и пыли, в которых они купаются, а затем пожирают, а также об огромных струях (джетах), которыми они выстреливают, когда поглощаемый газ ускоряется8.

Как образуются сверхмассивные черные дыры – загадка. Но даже гораздо меньшие черные дыры звездной массы, которые, как мы теперь знаем, рождаются из сколлапсировавших и умерших массивных звезд, еще недавно были просто математическими концепциями и курьезами. В 1916 году математик Карл Шварцшильд решил уравнения общей теории относительности Эйнштейна для сферической массы (их решением был ставший ныне знаменитым “радиус Шварцшильда” черной дыры). А в 1958 году физик из Технологического института Джорджии Дэвид Финкельштейн показал, что черные дыры имеют воображаемую границу, которую он назвал горизонтом событий, причем все объекты, включая свет, попавшие под эту границу, обратно вырваться не могут – и для них остальная Вселенная навсегда становится недоступной.

Тем не менее на протяжении десятилетий черные дыры – как имеющие звездную массу, так и сверхмассивные – были просто теоретическими (хотя и общепризнанными) концепциями. Только в середине XX века астрономы начали собирать доказательства их существования, в частности, ими стали первые наблюдения квазаров. Галактический источник рентгеновского излучения Лебедь X-1 был открыт в 1964 году, а позже ученые определили, что, скорее всего, он является черной дырой. Обнаружение LIGO гравитационных волн от столкновения двух черных дыр звездной массы 14 сентября 2015 года тоже оказалось очень полезным. Теперь, получив изображение с помощью обсерватории EHT, мы знаем, что сверхмассивные черные дыры тоже существуют в реальности.