Нейтронные звезды. Как понять зомби из космоса — страница 57 из 64

И все же у модели магнетара есть проблемы: до сих пор не найдено никаких FRB от магнетаров, расположенных гораздо ближе к Земле, таких как, например, источник гамма-излучения SGR 1806-20, находящийся в нашей Галактике. От него в декабре 2004 года зарегистрировали гигантский гамма-всплеск, а вот сигналов FRB из его ближнего окружения не обнаружили. Конечно, возможно, что излучение FRB от магнетаров концентрируется в узких пучках – и мы сможем обнаружить их только тогда, когда они направлены прямо на Землю.

Другая теория основывается на том, что FRB могут быть вызваны активными ядрами галактик – суперъяркими областями в центрах некоторых больших галактик, которые, как считается, подпитываются скрывающимися там сверхмассивными черными дырами. Многие активные ядра галактик выбрасывают джеты, которые могли бы генерировать FRB. Но и у этой гипотезы есть проблема: активные ядра обычно не существуют в карликовых галактиках. Резюмируя, можно сказать, что, хотя обнаружение источника-репитера было достижением, оно также породило новые научные проблемы. В частности, нужно понять, могут ли существовать два разных вида FRB-сигналов – повторяющиеся и одиночные12.

В 2017 году, вскоре после того, как сообщество PALFA опубликовало свои удивительные результаты по определению родительской галактики источника-репитера, Лоэб высказал предположение о том, что FRB могли посылаться инопланетянами, чем вызвал ажиотаж в СМИ. Он обдумывал свою концепцию светового паруса, который помог бы доставить людей к Альфе Центавра, и решил посмотреть на проблему FRB с другой стороны. Что, подумал он, если FRB были просто побочным продуктом работы радиопередатчиков на солнечных батареях – мегамежзвездных световых парусов, которые позволяют гигантским космическим кораблям продвигаться сквозь космическое пространство? Эта идея, безусловно, помогла сделать термин FRB более привычным, хотя подавляющее большинство астрономов и астрофизиков и не согласились с теорией Лоэба13.

“Если мы смогли обнаружить световые паруса в карликовой галактике, расположенной на расстоянии гигапарсека от нас, мы должны были бы обнаружить намного больше парусов в гораздо более близких к нам галактиках, – говорит Чаттерджи. – Эта гипотеза почти столь же правдоподобна, как то, что эта вспышка вызвана взрывом Звезды Смерти[33] в очень далекой галактике”.

В конечном итоге неважно, инопланетяне посылали сигналы или что-то другое, большинство астрономов считало, что им повезло участвовать в проекте Breakthrough Listen, который помог модернизировать их радиотелескопы и получить с их помощью важные научные результаты. Обнаружение FRB быстро стало одной из приоритетных задач этого проекта, и всего через несколько месяцев после локализации данного репитера команда проекта Breakthrough Listen, использовавшая телескоп GBT, получила дополнительные аргументы в пользу гипотезы магнетара. Во-первых, астрономы, изучив полученные на телескопе Arecibo данные наблюдений некоторых повторяющихся вспышек, поняли: кто бы или что бы их ни производило, оно должно было существовать в экстремальной, сильно намагниченной среде. Магнитное поле около источника оказалось настолько сильным, что перекручивало его радиоволны, – это явление известно как фарадеевское вращение плоскости поляризации. Данные с телескопа GBT подтвердили результат. Сканируя небо в поисках инопланетян, ученые из проекта Breakthrough Listen решили направить радиотелескоп на источник повторяющихся импульсов – и тот зарегистрировал двадцать один дополнительный всплеск излучения на еще более высоких частотах, и у всех наблюдалось одно и то же сильное фарадеевское вращение14.

Проект Breakthrough Listen помог также и телескопу Parkes. Как я рассказывала раньше, я попала в диспетчерскую телескопа в феврале 2019 года. Чтобы добраться туда, я поднялась на пролет лестницы в круглую башню под антенной, где каждая кнопка и дверь заставляли ностальгировать по 1960-м годам. А в аппаратной уже стояли современные компьютеры, которые астрономы используют для дистанционного управления тарелкой при наблюдении пульсаров. Еще один пролет по лестнице – и я оказалась в хранилище данных. Комната была заполнена стойками накопителей с мигающими лампочками. Огромный блок жестких дисков высотой один метр и шириной 2,7 метра принадлежит Breakthrough Listen. Это сердце новейшей системы записи, превосходящей все прежние и позволяющей астрономам находить любой возможный радиосигнал в собранных за двенадцать часов данных. Бейлз, участвующий в двух проектах – и по исследованию FRB, и в Breakthrough Listen, – сделал наше с ним селфи, на котором мы улыбаемся на фоне накопителей Мильнера.

Что бы ни генерировало сигналы FRB – магнетары, инопланетяне или что-то еще, – если задаться целью локализовать их источники и собрать больше информации о них, а не только увидеть несколько FRB в разных участках неба, необходимо использовать новые технологии. Усовершенствование одиночных тарелок-ветеранов было полезным делом, но этого недостаточно. Поскольку считается, что вспышки FRB в какой-то точке Вселенной происходят ежесекундно, чтобы их зарегистрировать, нужно иметь возможность одновременно наблюдать все небо. Телескопы с одной тарелкой, такие как Parkes, GBT и Arecibo, имеют относительно небольшие поля зрения, то есть они могут рассматривать только ограниченную область неба, а это означает, что регистрация капризных всплесков FRB во многом зависит от удачи. Поэтому Мильнер обратился к телескопу MeerKAT — одному из двух предшественников Square Kilometer Array (SKA) – и включил его в проект Breakthrough Listen. Когда SKA будет построен, он будет включать примерно две тысячи высокочастотных и среднечастотных антенн и апертурных систем, а также примерно один миллион низкочастотных антенн15. Первая антенная тарелка SKA, изготовленная и прибывшая в MeerKAT из Китая, была собрана на площадке телескопа в апреле 2019 года. Я наблюдала, как инженеры возились в электронных внутренностях ее опоры, а рядом стояла сама тарелка.

Южноафриканская антенная система и еще несколько радиотелескопов нового поколения начинают революционизировать только зарождающуюся область исследований FRB, и эта революция идет полным ходом. Две другие антенные системы недавно впервые локализовали различные единичные всплески. Одна из них, Australian Square Kilometer Array Pathfinder (ASKAP), тоже предшественница SKA, расположена в Западной Австралии, а другая, антенная система Калтеха Deep Synoptic Array-10, находится в долине Оуэнс, в радиообсерватории Owens Valley Radio Observatory (OVRO) недалеко от города Биг-Пайн в Калифорнии. Кроме того, совершенно новый телескоп в Канаде – CHIME (Canadian Hydrogen Intensity Mapping Experiment, “канадский эксперимент по картированию интенсивности водорода”) – теперь регистрирует FRB десятками. Астрономы думают, что совсем скоро они наконец раскроют тайну источников этих всплесков. Поэтому до того, как FRB перестанут быть загадкой и станут столь же обычным делом, как, скажем, всплески гамма-излучения, я направляюсь в канадскую провинцию Британская Колумбия. Точнее, в долину Оканаган, окруженную горами, – это регион, в котором находится зона радиомолчания радиотелескопа CHIME, знаменитый также своими винами.

CHIME: регистрация FRB в канадском районе виноделия

Солнечно, но так холодно, что в отчаянии я пытаюсь натянуть на голову бейсболку поглубже. Начало октября 2019 года, и я нахожусь на довольно небольшом открытом пространстве, со всех сторон обрамленном горами. Передо мной огромная металлическая конструкция, состоящая из четырех открытых, расположенных недалеко друг от друга U-образных полуцилиндров длиной сто метров каждый, и все они утыканы тысячами антенн. Сделанный из металлической сетки, телескоп по форме напоминает хафпайп-парк для конькобежцев или сноубордистов, только огромный, размером с пять хоккейных полей. Это и есть CHIME.

Чем-то этот телескоп напомнил мне Molongo — австралийский детектор, предназначенный для регистрации сигналов от пульсаров (а в последнее время и сигналов FRB). Это две совершенно разные конструкции, но их масштаб и уникальные формы настолько необычны, что у меня в голове они автоматически начинают сравниваться. CHIME – новый цифровой радиотелескоп, который регистрирует сигналы с низкими частотами от 400 до 800 МГц. Он может сканировать чрезвычайно обширные области неба, его многочисленные антенны регистрируют радиоволны, а центральный компьютер строит составное изображение16. Это самый большой телескоп в Канаде: его оборудование размещено на территории, площадь которой превышает шесть площадок Национальной хоккейной лиги, а его зона сбора данных охватывает площадь сто на сто метров.

Я приехала сюда из Лондона через Монреаль, где выросла, и зашла в свою канадскую альма-матер – Университет Макгилла. Там я побеседовала с астрономом Вики Каспи, которая, как я писала в главе 4, открыла совершенно новый способ хронометрирования магнетаров, адаптировав к рентгеновской астрономии известный метод хронометрирования радиопульсаров. В последнее время она много работала над FRB – фактически Пол Шольц, первым обнаруживший в архивных данных обзора PALFA повторный сигнал FRB от источника всплеска Спитлер в 2015 году, был ее аспирантом. Сама Каспи была главным ученым PALFA. За два года до этого открытия, в 2013-м, Каспи прочитала революционную статью Дэна Торнтона с коллегами, в которой подробно описывалось обнаружение четырех FRB на радиотелескопе Parkes — первая удача с момента обнаружения всплеска Лоримера. Именно та статья “по-настоящему заставила меня поверить в реальность сигналов FRB”, говорит Каспи.

Статья вдохновила ее и коллег на составление хитроумного плана, который показался им осуществимым, как только они узнали, на что способен CHIME.