Нейтронные звезды. Как понять зомби из космоса — страница 62 из 64

33 The Voyage to Interstellar Space. NASA, Mar. 27, 2019. www.nasa.gov/feature/goddard/2019/the-voyage-to-interstellar-space


Глава 3. Когда взрываются звезды


1 A. Azua-Bustos. Unprecedented Rains Decimate Surface Microbial Communities in the Hyperarid Core of the Atacama Desert. Nature Scientific Reports. 8, no. 16706 (Nov. 12, 2018).

2 Very Large Telescope: The World’s Most Advanced Visible-Light Astronomical Observatory. European Southern Observatory. www.eso.org/public/teles-instr/paranal-observatory/vlt/

3 ALMA: In Search of Our Cosmic Origins. European Southern Observatory. www.eso.org/public/unitedkingdom/teles-instr/alma

4 A. S. Eddington. The Internal Constitution of the Stars. Cambridge, UK: Cambridge University Press, 1926; R. H. Fowler. On Dense Matter. Monthly Notices of the Royal Astronomical Society 87, no. 2 (Dec. 10, 1926). https://doi.org/10.1093/mnras/87.2.114

5 K. Thorne. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: Norton, 1995. [К. Торн. Черные дыры и складки времени. М.: ФИЗМАТЛИТ, 2008.]

6 Discovers Neutron, Embryonic Matter. New York Times, Feb. 28, 1932. www.nytimes.com/1932/02/28/archives/discovers-neutron-embryonic-matter-dr-james-chadwick-describes-it.html

7 W. Baade, F. Zwicky. Cosmic Rays from Super-Novae. PNAS. 20, no. 5 (May 1, 1934): 259–263.

8 A. S. Burrows. Baade and Zwicky.

9 D. G. Yakovlev et al. Lev Landau and the Concept of Neutron Stars. Uspekhi Fizicheskikh Nauk. 56, no. 3 (2013). [Д. Г. Яковлев и др. Л. Д. Ландау и концепция нейтронных звезд. УФН. Т. 183, стр. 307 (2013).]

10 H. T. Cromartie et al. Relativistic Shapiro Delay Measurements of an Extremely Massive Millisecond Pulsar. Nature Astronomy. 4 (2020): 72–76. www.nature.com/articles/s41550‑019‑0880‑2

11 J. de Swart. Deciphering Dark Matter: The Remarkable Life of Fritz Zwicky. Nature, Sept. 3, 2019. www.nature.com/articles/d41586‑019‑02603‑7

12 A Surprise from the Pulsar in the Crab Nebula. News release, European Southern Observatory, Nov. 20, 1995. www.eso.org/public/news/eso9532

13 How Many Stars Are There in the Universe? European Space Agency. www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe

14 The Dawn of a New Era for Supernova 1987A. Hubblesite, NASA, Feb. 24, 2017. https://hubblesite.org/contents/news-releases/2017/news-2017–08.html

15 Там же.

16 O. Yaron et al. Confined Dense Circumstellar Material Surrounding a Regular Type II Supernova. Nature Physics. 13 (Feb. 13, 2017): 510–517.

17 A. Morris. Birth of a Black Hole or Neutron Star Captured for First Time. News release, Northwestern University, Jan. 10, 2019. https://news.northwestern.edu/stories/2019/01/birth-of-a-black-hole-orneutron-star-captured-for-first-time/

18 Stellar Evolution – The Birth, Life, and Death of a Star. NASA, Sept. 4, 2003. www.nasa.gov/audience/forstudents/9–12/features/stellar_evol_feat_912.html

Глава 4. Зомби и звездотрясения


1 ASTRON (Netherlands Institute for Radio Astronomy). LOFAR. www.astron.nl/telescopes/lofar/

2 Restoration Dwingeloo Radio Telescope Kicks Off. News release, ASTRON (Netherlands Institute for Radio Astronomy), Apr. 27, 2012. www.astron.nl/news-and-events/news/restoration-dwingelooradio-telescope-kicks

3 ASTRON. LOFAR.

4 Там же.

5 P. Ghosh. Rotation and Accretion Powered Pulsars. Vol. 10. Hackensack, NJ: World Scientific, 2007.

6 W. Becker, G. Pavlov. Pulsars and Isolated Neutron Stars. ArXiv pre-print service, Aug. 19, 2002. https://arxiv.org/pdf/astroph/0208356.pdf

7 R. N. Manchester. Millisecond Pulsars.

8 M. Matsuoka, K. Asai. Simplified Picture of Low-Mass X-Ray Binaries Based on Data from Aquila X-1 and 4U 1608–52. Publications of the Astronomical Society of Japan. 65, no. 2 (Apr. 25, 2013): 26.

9 Там же.

10 F. Reddy. With a Deadly Embrace, ‘Spidery’ Pulsars Consume Their Mates. Goddard Space Flight Center, NASA, Aug. 7, 2017. www.nasa.gov/content/goddard/with-a-deadly-embrace-spidery-pulsars-consume-their-mates/

11 A. Archibald. The End of Accretion: The X-Ray Binary / Millisecond Pulsar Transition Object PSR J1023 + 0038. APS Physics. (Apr. 2015).

12 Unique Double Pulsar Tests Einstein’s Theory. News release, Jodrell Bank Centre for Astrophysics, The University of Manchester. www. jb.man.ac.uk/doublepulsar/news/press3.html

13 C. Kouveliotou et al. Magnetars. Scientific American. 288, no. 2 (Feb. 2003).

14 F. P. Gavriil et al. Magnetar-like X-ray Bursts from an Anomalous X-ray Pulsar. Nature. 419 (2002): 142–144.

15 V. M. Kaspi et al. A Major Soft Gamma Repeater-like Outburst and Rotation Glitch in the No-Longer-so-Anomalous X-ray Pulsar 1E 2259 + 586. Astrophysical Journal Letters. 588, no. 2 (Apr. 11, 2003).

16 Multibeam Receiver Description. CSIRO. www.atnf.csiro.au/research/multibeam/instrument/description.html

17 D. A. Swartz et al. The Ultraluminous X-ray Source Population from the Chandra Archive of Galaxies. Astrophysical Journal. Suppl., ser. 154, no. 2 (2004).

18 Doppler Shift. Imagine the Universe! NASA, Goddard Space Flight Center, May 5, 2016. https://imagine.gsfc.nasa.gov/features/yba/M31_velocity/spectrum/doppler_more.html

19 American Institute of Physics online history archive. World Fame I. https://history.aip.org/history/exhibits/einstein/fame1.htm

Глава 5. Путешествие к центру нейтронной звезды


1 Polarization Light Waves and Color. Lesson 1. How Do We Know Light Is a Wave? Polarization. The Physics Classroom. www.physicsclassroom.com/class/light/Lesson-1/Polarization

2 V. Radhakrishnan, N. Manchester. Detection of a Change

of State in the Pulsar PSR 0833–45. Nature. 222 (1969): 228–229; P. E. Reichley, G. S. Downs. Observed Decrease in the Periods of Pulsar PSR 0833–45. Nature. 222 (1969): 229–230.

3 R. N. Manchester. Pulsars at Parkes.

4 J. R. Oppenheimer, G. M. Volkoff. On Massive Neutron Cores.

5 V. Gribov et al. Arkady Migdal. Physics Today. 44, no. 12 (1991): 92.

6 Superfluids. University of Oregon. http://abyss.uoregon.edu/~js/glossary/superfluid.html

7 S. Balibar. The Discovery of Superfluidity. Journal of Low Temperature Physics. 146, nos. 5–6 (Mar. 2007): 441–470.

8 E. Gibney. Neutron Stars Set to Open Their Heavy Hearts. Nature News. May 31, 2017. www.nature.com/news/neutron-stars-setto-open-their-heavy-hearts-1.22070

9 R. R. Silbar, S. Reddy. Neutron Stars for Undergraduates. ArXivpre-print service, Nov. 26, 2003. https://arxiv.org/pdf/nucl-th/0309041.pdf

10 G. Ashton et al. Rotational Evolution of the Vela Pulsar during the 2016 Glitch. Nature Astronomy. 3 (2019): 1143–1148.

11 M. Riordan. The Discovery of Quarks. Stanford Linear Accelerator Center, Stanford University, Apr. 1992. www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5724.pdf

12 J. M. Lattimer. Neutron Star Structure and the Equation of State. Astrophysical Journal. 550, no. 1 (2001).

13 H. T. Cromartie et al. Relativistic Shapiro Delay Measurements.

14 Our History: A Passion for Discovery, a History of Scientific Achievement. Brookhaven National Laboratory. www.bnl.gov/about/history

15 FAIR – The Universe in the Lab. Facility for Antiproton and Ion Research in Europe. https://fair-center.eu/

16 Shapiro Delay. COSMOS – The SAO Encyclopedia of Astronomy. http://astronomy.swin.edu.au/cosmos/S/Shapiro+Delay

17 T. Damour. 1974: The Discovery of the First Binary Pulsar. ArXivpre-print service, Feb. 17, 2015. https://arxiv.org/pdf/1411.3930.pdf

18 M. Kramer. Pulsars and General Relativity. Max Planck Institute for Radio Astronomy, Sept. 15, 2010. www.mpifr-bonn.mpg.de/1038767/Kramer_pulsars.pdf

19 M. C. Miller et al. PSR J0030 + 0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophysical Journal Letters. 887, no. 1 (Dec. 12, 2019); T. E. Riley et al. A NICER View of PSR J0030 + 0451: Millisecond Pulsar Parameter Estimation. Astrophysical Journal Letters. 887, no. 1 (Dec. 12, 2019).

20 The Neutron Star Interior Composition Explorer Mission. Goddard Space Flight Center, NASA. https://heasarc.gsfc.nasa.gov/docs/nicer

21 A. Watts. Constraining the Neutron Star Equation of State Using Pulse Profile Modelling. AIP Conference Proceedings. 2127, no. 1 (2019).

22 K. Nandra et al. Athena: The Advanced Telescope for High-Energy Astrophysics. European Space Agency, 2013. www.cosmos.esa.int/documents/400752/400864/Athena+Mission+Proposal/18b4a058-5d43-4065‑b135-7fe651307c46

23 Using Gravitational Wave Observations to Learn about Ultra-Dense Matter. LIGO, Aug. 12, 2019. www.ligo.org/science/Publication-GW170817ModelSelection/index.php

Глава 6. Как нейтронные звезды убивают теории темной материи

1 Making (Galactic) History with Big Data: First Global Age Map of the Milky Way. News release, Max Planck Institute for Astronomy, Jan. 8, 2016. www.mpia.de/news/science/2016–01‑milky-way-agemap

2 South Africa’s MeerKAT Telescope Discovers Giant Radio ‘Bubbles’ at Centre of Milky Way. News release, SKA Telescope, Sept. 12, 2019. www.skatelescope.org/news/MeerKAT-discovers-giant-radio-bubbles

3 Dark Energy, Dark Matter. NASA, Dec. 8, 2019. https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy

4 G. Bertone, D. Hooper. A History of Dark Matter. ArXiv preprint service, May 24, 2016. https://arxiv.org/pdf/1605.04909.pdf

5 T. Linden, B. J. Buckman. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro. Physical Review Letters. 120, no. 121101 (Mar. 23, 2018).

6 Fermi Bubbles. Goddard Space Flight Center, NASA. https://fermi.gsfc.nasa.gov/science/constellations/pages/bubbles.html