Нелокальность. Феномен, меняющий представление о пространстве и времени, и его значение для чёрных дыр, Большого взрыва и теорий всего — страница 46 из 68

четырех измерениях. Если посмотреть на эти материалы, то вы не увидите напрямую более высокого измерения. Оно существует на другом уровне описания, где первичными объектами являются не частицы, а их кластеры. Математика AdS/CFT-соответствия облегчает анализ таких систем.

Аналогичное явление наблюдается на другом конце температурной шкалы. За последнее десятилетие на ускорителях вроде Большого адронного коллайдера удалось разогнать ядра атомов до скоростей, соответствующих сверхгорячему состоянию материи. Полученная кипящая и бурлящая плазма представляет собой невероятную кашу — кварки и глюоны в ней взаимодействуют настолько интенсивно, что даже величайшие математические таланты на планете не могут предсказать, как они себя поведут. Тем не менее эта плазма отличается внутренней простотой, которая становится очевидной, если сделать мысленный скачок и представить, что она существует в четырех измерениях. Например, трение в плазме можно рассматривать как гравитационные волны, исходящие из черной дыры в более многомерном пространстве. Такая аналогия даже физику не сразу приходит в голову. В каком-то смысле Большой адронный коллайдер создает не новые формы материи, а пространство.

Удивительно сознавать, что пространство, которое так долго считали незыблемым фундаментом физической реальности, может покоиться на еще более глубоком слое. Проявления нелокальности — ключи к разгадке этой фундаментальной структуры, если, конечно, удастся понять, как нечто формируется, на основе наблюдения за тем, как оно распадается. По иронии судьбы основной упрек, который предъявляют квантовому граффити, матричным моделям и AdS/CFT, заключается не в том, что они слишком фантастичные, а в том, что они недостаточно фантастичны. Все эти модели по-прежнему строятся на базе квантовой физики и общей теории относительности, и значительная часть структуры, которая вроде бы должна возникать спонтанно, фактически предопределена правилами.

В частности, эти модели исходят из существования времени, они не учитывают предположения Лейбница и Маха о том, что время должно появляться точно так же, как и пространство. Некоторые исследователи видят в этом не недостаток, а глубинную истину природы — время должно быть фундаментальным, даже если пространство таковым не является. В конце концов, должна же у физики быть некая фундаментальная структура, нечто такое, на чем строится все остальное, и время ничем не хуже любого другого кандидата на эту роль. В самом деле, разве можно говорить об эмерджентности как о временно́м процессе, если она не предполагает существования времени? «Стоит только сказать, что время эмерджентно, и вы сходите с рельсов, — говорит Мартинек. — Каковы правила? Что я делаю?» Космолог из Калифорнийского технологического института Шон Кэрролл высказывается очень коротко: «Пространство совершенно переоценено, а время недооценено… Я думаю, что время должно остаться… Пространство же — полная фикция. Пространство — это просто приближенное представление, которое полезно в определенных условиях».

Вместе с тем такое разделение времени и пространства противоречит величайшей догадке Эйнштейна о том, что то и другое фундаментально неразделимо. Если одно является эмерджентным, то таким должно быть и другое. Многие физики полагают, что время возникает, и ищут пути представления эмерджентности без обязательного существования времени. Разгадка видится в голографическом принципе. До сих пор я говорил о нем как о способе генерирования пространства, однако он может генерировать и время. Ключевым моментом в обоих случаях является существование границы. Если Вселенная имеет границу, расположенную очень далеко в пространстве, то эмерджентное измерение пространственно, а если граница расположена в прошлом или в будущем, то эмерджентное измерение темпорально. В сущности, насколько могут судить астрономы, наша Вселенная имеет темпоральные, а не пространственные границы. В прошлом есть Большой взрыв; в будущем — бесконечно ускоряющееся расширение, которое тоже служит своего рода границей. Наблюдатель, находящийся на этой границе в отдаленном прошлом или будущем, должен знать все, что можно знать о промежуточных моментах. Вчера, сегодня и завтра должны слиться в одно целое.

По этой логике теории, которые предполагают существование времени, являются неполными, простыми ступенями к полному отчету о том, как пространство и время появляются из более глубоких физических процессов. Теоретикам необходим еще более радикальный подход к объяснению нелокальности, чем те, которые они использовали до сих пор. И они, без всякого сомнения, приближаются к нему.

Заключение: амплитуэдр

Незадолго до начала Второй мировой войны Вернер Гейзенберг совершил широко известную и исторически неоднозначную поездку в Копенгаген, во время которой он обсуждал с Нильсом Бором свое участие в создании атомной бомбы для нацистов. Не так известна, но не менее знаменательна его другая поездка в конце войны. В декабре 1944 г. Гейзенберг посетил Швейцарию и выступил с лекцией в Цюрихском университете. В числе слушателей наряду с его старыми друзьями-физиками находился незнакомец, возможно местный любитель физики или, не исключено, агент СС, посланный следить за ним. На самом деле это был Мо Берг — бывший бейсболист, лингвист с принстонским образованием и американский шпион. Перед ним стояла задача узнать, насколько Гейзенберг близок к созданию бомбы, и, если потребуется, убить его. Поскольку Гейзенберг ни слова не проронил о своей работе над бомбой, а лекцию посвятил новой идее в квантовой физике, так называемой S-матрице; Берг оставил его в живых.

S-матрица была революционным подходом к физике без пространства и времени, еще более далеким от обычного понятия пространства, чем графы и матрицы, о которых я говорил в предыдущей главе. Гейзенберг, всегда имевший зуб на пространство, считал, что проблемы квантовой теории поля с объяснением электрической и магнитной сил, в частности с их предсказанием, доказывают бесконечность величины этих сил. Чтобы обойти вопрос о том, правильна ли теория и что может заменить ее, он создал математическую версию принципа «то, что ты не знаешь, навредить тебе не может».

Гейзенберг предложил рассматривать беспорядочные столкновения частиц как черный ящик. Известно, что входит в него, известно, что выходит, но никто не видит сложных процессов, протекающих внутри. S-матрица представляет вероятности возможных исходов. Чтобы определить входные данные, говорил Гейзенберг, теоретикам не нужно знать, что происходит внутри ящика. Они могут не принимать во внимание, где находятся частицы, как они движутся и даже то, на самом ли деле это частицы, а не пульсации поля или какая-нибудь странная вещь, до которой физики еще не додумались. Короче говоря, теоретики могут отказаться даже от упоминания идеи пространства при описании физических процессов. Вместо этого заключение о том, что они наблюдают, нужно делать на основе широких правил. Это сродни выбрасыванию игральных костей. Можно использовать суперкомпьютер для решения уравнений движения для маленьких кубиков с углублениями, кувыркающихся в беспорядочных воздушных потоках. А можно поступить проще: исходить из того, что в результате симметрии кость имеет равные шансы упасть на любую из шести сторон.

К счастью для всех нас, математическое изобретение Гейзенберга работало намного лучше, чем его бомба. S-матрица стала частью инструментария всех теоретиков, но совсем не по той причине, которую первоначально предполагал Гейзенберг: в ней увидели удобную систему учета, а не способ обходиться без пространства и времени. Незадолго до конца войны физики поняли, как использовать квантовую теорию поля для выполнения полномасштабных расчетов — как открыть ящик и заглянуть внутрь, — и отвлеклись от вопроса о том, распадаются ли пространство и время в конечном счете. Так или иначе черный ящик снова захлопнулся в 1950–1960-х гг., когда физики погрузились в глубины атомного ядра. Квантовая теория поля, похоже, не подходила для описания ядерных сил, и S-матрица вновь обрела привлекательность. Но на этот раз теоретик Джеффри Чу из Калифорнийского университета в Беркли сделал шаг вперед. Если Гейзенберг предполагал существование определенных базовых законов физики — механизма, действующего внутри ящика, — то Чу исходил из того, что их нет. Возможно, S-матрица — это все, что есть.

Это было нечто радикальное, а радикализм был популярен в Беркли 1960-х гг. Отчасти целью Чу было избавление от пространства и времени, в которых он видел причину неработоспособности квантовой теории поля. «Чтобы заметно продвинуться вперед, нам нужно остановиться и осмыслить такой ненаблюдаемый континуум», — говорил он своим коллегам на лекции в 1963 г. Чу предположил, что вместо последовательного описания частиц или волн, распространяющихся в пространстве, законы физики должны описывать набор принципов, на основе которых сущности или процессы связаны друг с другом. Внутренность ящика — это не часовой механизм с движущимися частями, а пазл, складывающийся определенным образом. Части не только не движутся, они на самом деле не являются «частями». В атомном ядре нет ничего более фундаментального, чем все остальное, — все имеет свое место в структуре. S-матрица описывает эту структуру математически, и физики могут подходить к ней как к судоку: заполнять решетку чисел на основе простых правил. Пространство и время, воспринимаемые нами в макроскопических масштабах, рождаются из субатомного порядка.

Так или иначе, идея зашла в тупик. Она предсказывала, что базовые принципы должны полностью определять S-матрицу. Чу писал: «Природа такова, как есть, поскольку это единственно возможная природа, которая не противоречит сама себе». Однако по существу уникальной S-матрицы для частиц, которые изучал Чу, не существовало. Общие правила не говорили, куда ставить все числа, подобно плохо составленной судоку, в которой недостает информации, чтобы заполнить ее. К началу 1970-х гг. квантовая теория поля смогла объяснить ядерные силы старомодным пространственно-временным образом, и большинство физиков отказались от S-матрицы во второй раз.