Об этом материале, изобретенном, кстати, совсем для других целей, не раз еще пойдет речь дальше. Сделаем поэтому небольшую паузу и проследим мысленно как бы главную линию создания материалов для машинной индустрии — станового хребта нашей цивилизации.
Если не останавливаться на механизмах, изготовленных в основном из дерева (а таких было немало, и сослужили они человечеству довольно долгую и верную службу), то можно сказать, что сначала машины делали в основном из чугуна. До нашего времени дошло слово «чугунка» — так называли в России железную дорогу.
Затем в ход пошли конструкционные углеродистые стали.
Для обработки этих сталей понадобились, естественно, инструменты из материала более твердого, чем тот, что следовало обработать. Тогда появились легированные быстрорежущие стали — с добавлением к железу вольфрама и кобальта. Вольфрам и кобальт, образуя с железом двойные карбиды, упрочняли сталь, увеличивали ее стойкость к нагреву — не давали резцам «садиться» при работе.
Инструменты из быстрорежущей стали тоже надо было обрабатывать… Чем-то, естественно, более твердым, чем быстрорежущая сталь.
Тогда в ответ на эту настоятельную потребность техники появился принципиально новый материал — твердые сплавы. И новая отрасль техники — порошковая металлургия, спекающая из металлических порошков эти новые материалы. Несколько забегая вперед, можно утверждать, что только после повсеместного распространения твердых сплавов могла возникнуть истинная (техническая, производственная, экономическая) необходимость в еще более твердом материале. И что таковым мог быть — в пределах известного науке и технике — только алмаз.
Но здесь нам важнее другая, названная выше сторона дела: техническая возможность изобрести аппарат для синтеза алмаза появилась только после создания твердых сплавов. (Один из примеров диалектики науки и техники, как, впрочем, и более широкого круга вещей и явлений: предыдущее нуждается в последующем, как и последующее в предыдущем, — одно без другого либо невозможно, либо бессмысленно.)
Твердые сплавы, способные выдержать температуру в несколько тысяч градусов, появились почти одновременно в Европе и в Америке. Они были спечены из карбидов вольфрама и кобальта. В Америке сплав назвали карболоем, в Европе — видием, от немецкого wie Diamant («как алмаз»). Так что и названием своим новый материал сразу же оказался как бы привязан к алмазу.
Бриджмен и его сотрудники конструировали все новые камеры и устройства, передающие давление исследуемому веществу. Дело двигалось медленно: карболой непривычен, свойства его еще плохо изучены. Но так или иначе, а к концу 30-х годов в распоряжении Бриджмена был уже аппарат, в котором давление удавалось поднимать до 130 000 атм при 1000° тепла. Подопытное вещество сжималось в нем с четырех сторон тетраэдральными наковальнями из карболоя. В этом аппарате группе Бриджмена удалось синтезировать минерал гранат, в том числе ярко-красный гранат — пироп, естественный спутник природных алмазов в кимберлитовых трубках…
Глава VIШВЕДСКИЙ СИНТЕЗ
Много было в неспокойном мире конца 30-х и начала 40-х годов иных дел и забот. Уже маршировали по бетонным дорогам третьей империи полки фашистского вермахта, уже была «присоединена» Австрия, захвачена Чехословакия. И в наступающей грозной кутерьме была, наверное,, не на самом виду научная истина, отысканная Лейпунским. Многим, наверное, было не до того, что рецепт алмаза в общем-то выписан, что остается техника: давление, температура… Остается делать алмазы.
Но так, чтобы вообще забыли об алмазах «из печки», тоже не могло быть.
Вторая мировая война началась — и все, что не имело прямого отношения к военным нуждам, отошло на второй план. Прекратились работы с высоким давлением в Институте химической физики, и сам институт был эвакуирован из осажденного фашистами Ленинграда в тыловую Казань. Заглохли работы по алмазной проблеме и в Америке, в лаборатории Бриджмена.
И тем не менее нельзя сказать, чтобы мир совсем забыл об искусственных алмазах.
Над Германией 1943 г. все неотступнее вставал призрак неминуемого краха фашистского рейха. И сказать, что немецкая наука была в те времена военизирована — все равно, что ничего не сказать. Лаборантов гнали на фронт по тотальной мобилизации. Приват-доцентов тоже отправляли на фронт. Бывало, отправляли и профессоров. И уж прежде всего прикрывали подряд все исследования, не сулившие немедленного — не через пять лет, не через три года, а только немедленного, только завтра! — шанса продлить войну. Даже на урановый проект — и то не давали денег…
И вот в том самом 1943 г. в Берлине трое исследователей — Гунтер, Гезелле и Ребентиш — получили разрешение провести эксперименты, задача которых могла бы показаться, по меньшей мере, сомнительной: синтезировать алмаз. Много позже весьма компетентные физики назвали эту попытку серьезной. То, что она не удалась и алмазные богатства в кладовые рейха не лосыпались, — уже иное дело. Интересен сам факт: разрешение вести весьма дорогостоящую работу…
Тот же 1943 г. Другая воюющая сторона, другая страна и другая столица — Лондон. Еще не до конца ушедший страх перед возможным вторжением гитлеровцев. Продовольственные карточки, строжайшее затемнение, зенитки на крышах, ночные налеты фашистской авиации. Ученые занимаются в основном делами, имеющими более или менее прямое отношение к происходящему.
В Британском музее естественной истории в Лондоне хранятся 12 невзрачных кристалликов размером в десятые доли миллиметра (самый большой — 0,1X0,2X0,4 мм). Это — своеобразная реликвия. Это — памятник научной ошибке, не мистификации, но добросовестной ошибке, — алмазы Хэннея, упомянутого в третьей главе этой книги.
Еще в 1880 г. до Муассана ц Хрущева англичанин Хэнней, как немногие до него и многие после него, пьь тался изготовить искусственный алмаз; в заваренных наглухо стальных трубах он прокаливал костяное масло, или парафин, или, может бытщ еще что-то — словом, углеводороды. К ним добавлялась затравка — соли лития и натрия, а также, в некоторых опытах, мелкие алмазы (тоже для затравки). Стальные трубы были наглухо заварены с обеих сторон на кузнечной наковальне (других способов сварки в то время не было), и Хэнней калил их докрасна целый день.
Из 80 труб столь тяжкое испытание выдержали всего три. И в одной из них в черной спекшейся массе Хэнней обнаружил более десятка блестящих кристалликов — очень твердых, тяжелых и жаростойких. Их удельный вес был 3,5, они царапали корунд, имели слегка скругленные плоскости октаэдра, не растворялись в плавиковой кислоте и без остатка сгорали в пламени паяльной лампы.
Уже после Муассана, когда англичане вспомнили о Хэннее хотя бы потому, что им никак не улыбалось отдавать налиму первенства в таком деле французу, Чарлз Парсонс, тоже упоминавшийся уже на этих страницах, пытался повторить успех Хэннея. Стесняться в средствах ему не приходилось, и труб было изведено немало. Одну за другой заваривали, калили, взламывали остывающие трубы с начинкой. Все бесполезно: алмазы почему-то не получались.
И в более поздние времена опыты Хэннея никто из серьезных ученых всерьез не принимал, хотя сначала считалось, что алмазы у него получились. Потому кристаллики и попали в музей: 12 крупинок, извлеченных Хэннеем из одной такой трубы после суточного каления в кузнечном жару.
Но алмазами их считали с натяжкой, ибо ученым было хорошо известно (тем более теперь, после расчетов Лейпунского), что никаких алмазов у Хэннея получиться не могло. Что это либо корунды, либо шпинели, либо какие-нибудь карбиды.
Уверенность в этом была столь велика, что никому даже не приходило в голову заново исследовать кристаллики, хотя со времен Брэггов можно было со стопроцентной гарантией отличить кристалл алмаза от любого другого кристалла — каждое вещество дает рентгенограмму не менее индивидуальную, чем дактилоскопический отпечаток.
И вот в 1943 г., в разгар войны, в Британском музее естественной истории появляются два физика — Баннистер и Лондсдейл. Появляются, получают под расписку, по строгому счету, все 12 крупинок и отбывают в свою лабораторию, чтобы снять рентгенограммы, которых еще никто не снимал, найти однозначный и надежный ответ на вопрос, из чего сделаны алмазы Хэннея.
К немалому удивлению исследователей, рентгенограммы со всей определенностью показали, что 11 из 12 крупинок Хэннея — это, действительно, алмазы. В письме одному из своих коллег Мэри Лондсдейл сообщила свое мнение на сей счет: Хэнней был просто-напросто обманщиком и подложил в свои трубы кристаллики природных алмазов.
Запутанная история. Непонятно, прежде всего, при таком объяснении, почему Хэнней ни от кого и не скрывал, что в некоторые трубы он для затравки подкладывал натуральные алмазы. Однако искусственные алмазы получились у него, пояснял в свое время Хэнней, в других трубах, где затравки не было. Если прямой обман, фальсификация опыта, то зачем лишние сложности?
И еще одно! Можно ли на основании наших сегодняшних знаний, а тем более тех, какие были в начале 40-х годов, утверждать, что об алмазах нам все доподлинно известно?
И здесь нам придется снова обратиться к исследованию совершенно иного толка — сугубо теоретическому.
Дело было так. В один из зимних дней конца 1942 г. сотрудник эвакуированного в Казань ленинградского Института химической физики Давид Альбертович Франк-Каменецкий, распиливая дрова на циркулярной пиле, поранил правую руку и был отправлен домой. Неожиданно образовавшиеся две недели свободного времени он решил употребить на давно интересовавшую его работу, для которой можно было обойтись и без правой руки. (В здоровом же состоянии Франк-Каменецкий не считал в то время эту работу возможной, поскольку практической отдачи она не сулила.)
Интересовало Франк-Каменецкого вот какое обстоятельство: «В тех случаях, когда твердое кристаллическое тело может существовать в нескольких модификациях, далеко не всегда образуется первично та из них, которая в данных условиях является термодинамически устойчивой», — это первая фраза его казанской рукописи «Теория выращивания неустойчивых фаз и проблема алмаза». Действительно, алхимик Бранд сначала выделил неустойчивый желтый фосфор, а вовсе не устойчивый красный. Это правило (сначала выделяется неустойчивая, а затем устойчивая фаза) Вильгельм Оствальд назвал некогда правилом ступеней.