Неоткрытая планета — страница 19 из 37

Нет, и это не помогло. Графит не поддавался по отдельности ни температуре, ни давлению. Правда, удавалось получать прозрачные твердые минералы, но то не было искомым.

К каким только ухищрениям не прибегали! Графит сжимали, нагревали и охлаждали. Думали: из расплава возникнут долгожданные кристаллы, которыми можно будет резать стекло. Опять не то! И так было не раз: сообщение об удаче, сенсация, а потом — жестокое разочарование.

Ближе всех к истине подобрался английский физик П. Бриджмен. Он установил рекорд сверхвысоких давлений — 425 тысяч атмосфер, кстати сказать, долго никем не превзойденный.

Бриджмен оперировал десятками тысяч атмосфер и несколькими тысячами градусов. Оставалось сделать всего один, небольшой шаг — и цель была бы достигнута. Но беда в том, что не знания руководили поисками. Приходилось идти ощупью, ибо никто не мог сказать, в каких же условиях рождаются алмазы в природе.

Лишь счастливый случай мог натолкнуть на такое сочетание температуры и давления, которое дало бы нужный результат. И, наконец, в 1955 году, через шестьдесят пять лет после того, как Муассан вынул из своей печи нечто показавшееся ему алмазом, алмаз появился на свет — «настоящий» искусственный, созданный человеческими руками.

Пусть он неказист и не идет ни в какое сравнение с блестящими именитыми своими собратьями. Техника получила то, что ждала. А мы получили уверенность, что находимся на верном пути — пути разгадки тайн происходящего в земных недрах.

Теперь искания, сомнения, ложные удачи и первый успех позади. Алмазы стали таким же продуктом, каким для техники является любое другое вещество. Разница только в тому что их производят пока еще мало. Но ведь есть же искусственные элементы, мировая добыча которых — всего граммы в год!

Дело не в количестве, а в качестве. Создав алмаз, человек одержал победу в соревновании с природой. Он даже превзошел ее: вслед за алмазом было получено еще более твердое вещество — боразон. Тут уж природе пришлось уступить — столь твердого вещества она создать не смогла.

Впрочем, возможно, что мы и найдем в недрах какое-либо подобие боразона. Быть может, есть вещества и тверже его.

Мы встали на путь, конец которого трудно предугадать. Давление и температура стали волшебным орудием, которое превращает одни вещества в другие — все более и более твердые.

Граненый алмаз — бриллиант — дробит на цветные брызги свет. Его игрой можно любоваться без конца. Но бесформенный, иногда оплавленный алмазный кристалл — о чем он может рассказать? Оказывается, о многом, и притом особенно интересном для нас, исследователей земных глубин.

Попробуем прикинуть, где должна находиться родина алмазов. Теория говорит: графит станет алмазом при давлении не меньше пятидесяти тысяч атмосфер и температуре не меньше тысячи градусов.

Отправимся в глубь земной коры. Пройдем двадцать, сорок, семьдесят километров. Давления явно не хватит! Даже у самой «подошвы» твердой оболочки всего примерно двадцать пять тысяч атмосфер. Значит, не в коре рождаются эти драгоценные камни.

Опустимся глубже. Давление будет расти, пока наконец не достигнет нужных пятидесяти тысяч. Глубина — сто километров. Вот отсюда-то и начинается горнило, в котором зарождаются алмазы.

Но, прежде чем попасть на поверхность, новорожденному предстоит пройти стокилометровый путь. Как же выбирается он из своей «колыбели» сквозь плотную толщу пород?

У него, как и у других минералов, только один выход — подняться вместе с лавой. Хорошо было бы, если бы вулканы «плевались» алмазами. Увы, так не бывает… Еще никто не находил драгоценностей в лаве, хотя и вулканов достаточно на земном шаре и извержений хватает. А ведь лава пришла именно оттуда, с тех самых заветных глубин. Почему же не принесла она с собой алмазы?

Да потому, что она двигалась слишком медленно, и они либо растворились, либо с ними произошла обратная метаморфоза: медленно переходя от сверхвысоких давлений к высоким, они превратились снова в обыкновенный графит.

Совершенно иное происходит, когда вещество недр выбрасывается к поверхности грандиозным подземным взрывом. При огромных давлениях и температурах рождаются тогда целые алмазные россыпи. Взрыв прокладывает дорогу сквозь толщу пород, и масса всевозможных минералов зеленоватого или голубоватого цвета заполняет длинные трещины — трубы, похожие на жерла вулканов. В этой массе вкраплены алмазные кристаллы, причем часто довольно крупные и порой даже гиганты, которые потом прославятся на весь мир.

Впервые в Африке нашли алмазные трубки. Их стали называть кимберлитовыми — по имени южноафриканского города Кимберли. А не могли ли появиться такие трубки в других местах? Поиски повели в Сибири — сначала на бумаге, с пером и картой. Как когда-то планету Нептун открыли сначала «на кончике пера», а лишь потом увидели в телескоп, так и якутские алмазы были предсказаны теорией и найдены затем геологами.

Вместе с алмазами к поверхности выносятся из глубин и кусочки вещества неведомой нам пока мантии. Не думайте только, что эти кусочки можно подержать в руках. Для этого они слишком малы. Их можно увидеть только с помощью невидимых рентгеновских лучей.

В кристалле атомы расположены на вполне определенных местах. Просвечивая рентгеном кристалл, мы можем определить, каков остов, решетка кристаллической постройки, и какие в ней есть вкрапления, хотя бы и самые мелкие.

Кусочки зеленого оливина (помните оливиновый пояс инженера Гарина?), красного граната, видоизмененного давлением базальта — вот что попадается в кристаллах алмазов. Как решить, что захвачено ими именно из мантии?

Вопрос этот не простой, и удалось пока установить, что «исковерканный» базальт — ему и название дали особое, эклогит — минерал очень больших глубин. Дважды — и это случилось в двух крупнейших алмазоносных районах мира, южноафриканском и якутском, находили эклогиты с вкраплениями красного граната, зеленого пироксита и множества кристалликов алмазов.

— Считают, — говорит академик В. Соболев, — что эти эклогиты входят в состав мантии. Еще до появления сверхглубоких скважин природа подарила нам кусочек загадочного глубинного вещества.

Итак, правы те, кто думает: сверхвысокие давления в Верхней Мантии до неузнаваемости перестраивают вещество, а составляет ее все тот же знакомый нам базальт. И все же остается еще много неясного. Без бурения тайн мантии не раскрыть.

В обломках лавы затесались, помимо алмазов, еще и гранаты. Уж не полевой ли шпат это, который давление сделало из светлого ярко-красным?

Попадается в лаве и зеленый оливин — доказательство того, что в мантии идут не только физические, но и химические превращения. Мантия оказывается сложным орешком. Снова и снова приходится повторить: только лабораторные модели и сверхглубокое бурение откроют нам ее истинное лицо.

Маленькое отступление. Где еще, кроме земных недр, могут встретиться сверхвысокие давления и температуры? Ну конечно же, при столкновении метеорита с Землей.

Этот космический странник мчится со скоростью в десятки километров в секунду. Прорезав атмосферу и раскалившись от трения о воздух, он, оплавленный и смятый, со страшной силой врезается в землю.

Как при взрыве, мгновенно повышается давление. Температура и так достаточно высока. А ведь во Вселенной все тела построены из одних и тех же атомов. Могут быть в метеорите атомы углерода? Да! Но, если так… Почему бы не превратиться углероду, точнее, графиту в алмаз? Почему бы не произойти тому же самому, что произошло в земных недрах?

И действительно, в камнях, падавших с неба, не раз находили алмазы. Да и не очень маленькими были эти небесные драгоценности. Правда, история о том, будто бы в конце прошлого века в метеорите был найден столь крупный алмаз, что им украсили перстень русского царя, оказалась легендой. Миллиметрами измеряются их размеры.

Но так ли все же это? Ученые решили проверить. В лаборатории искусственно воспроизвели встречу метеорита с Землей. На ничтожные доли секунды ударная волна сжимала графит, и одновременно резко повышалась температура. Возникли крошки-алмазики диаметром в сорок микрон.

Но как же с миллиметровыми алмазами? Сорок микрон — это всего четыре сотых миллиметра. До целых миллиметров далеко!

Однако ничего необъяснимого тут нет. Просто при падении настоящего метеорита давление было больше лабораторных трехсот тысяч атмосфер. Только и всего.

Искусственный алмаз — бесспорно одно из самых интересных достижений техники наших дней. Когда несколько лет назад из-под пресса, сжимающего с исполинской силой графит, извлекли, наконец, крохотные, едва различимые глазом алмазики, — это была победа.

Двести тысяч атмосфер — далеко не все, что нужно для превращения невзрачного, мягкого серого графита в наитвердейший алмаз. Камеру с графитовым сырьем нужно еще разогреть, и ни мало ни много, как до четырех тысяч градусов!

Нельзя ли «смягчить» условия опыта? Нельзя ли снизите давление, уменьшить температуру? Оказалось, можно.

Химикам известны вещества — катализаторы, которые не вступают в реакцию, но помогают ей. Попробовали применить катализаторы и здесь.

Между слоями графита положили слои разных металлов. Металл плавится, проникает в графит, и… пока еще никто не знает, что там происходит. Но важно, что близ тоненькой металлической пленки начинается интенсивная перестройка, перегруппировка атомов графита.

Одна кристаллическая решетка переходит в другую, и притом уже не при двухстах тысячах, а при ста тысячах атмосфер, уже не при четырех тысячах, а при двух с половиной тысячах градусов. Любопытно, что при разной температуре получаются алмазы разных цветов: при самой низкой — черные, а потом — зеленые, желтые, белые.

Видимо, и природа создавала алмазы тоже в разных условиях. Оттого и находят эти драгоценные камни то «желтой воды», то «голубой», то «белой».

Итак, сначала миллиметровые крупинки, потом — годовое производство почти полутонны технических алмазов.