Неоткрытые миры — страница 16 из 38

В лаборатории работало несколько человек, каждый занимался своим делом, но слышал, о чём говорят другие. Олег Шкляревский из Харькова услышал ворчание Гейма и пришёл на помощь. Чтобы получить свежий слой графита, к образцу обычно приклеивали липкую ленту, отрывали её и выбрасывали. Олег достал из мусорной корзины такую ленту со следами графита и показал её Гейму. Тот посмотрел на неё в микроскоп и обнаружил чешуйки гораздо тоньше, чем получались у китайского студента. Ситуация выглядела многообещающей и требовала вовлечения дополнительных людей. Олег был занят и не вызвался участвовать в ещё одном проекте, а Константин Новосёлов — вызвался. Через год с помощью этой грязной ленты скотча они получили результат, удостоенный Нобелевской премии.

— Мне кажется, что сотрудник, вытащивший ленту скотча из мусорной корзины, потом сожалел, что не вызвался добровольцем в новый проект, — сказала Галатея.

— Ты тоже можешь пожалеть, что не присматривалась к карандашным линиям, которые так любишь проводить. Ведь там тоже масса тончайших пластинок графита! — подначил Андрей сестру.

— Лента скотча оказалась исключительно полезной, но не была для Гейма, как он вспоминал, «эврикой», то есть моментом главного открытия. За несколько дней Гейм и Новосёлов быстро нашли способ выбирать самые тонкие чешуйки графита, после чего Константин аккуратно перенёс пинцетом графитовую пластинку под микроскоп и присоединил к ней контакты из специальной проводящей серебряной пасты. Гейм отметил в своей Нобелевской лекции, что такой кристалл графита имел размер, сравнимый с сечением человеческого волоса, а толщину в 20 нанометров. Он вспоминал: «Для того чтобы пинцетом перенести такой кристалл со скотча, а затем сделать четыре близко расположенных контакта с помощью всего лишь серебряной пасты и зубочистки, требуется высочайший уровень экспериментаторского мастерства. В наше время немногие экспериментаторы имеют пальцы, достаточно ловкие для того, чтобы изготовить такие образцы».

В самом первом образце, сделанном вручную на стекле, ясно проявилось воздействие внешнего электрического поля, изменившего проводимость графитового кристалла на несколько процентов. Гейм прекрасно знал, как трудно получить такой эффект, и вспоминал свою реакцию на результат: «Я был просто шокирован. Если эти безобразного вида устройства, сделанные вручную из относительно больших и толстых пластинок, уже демонстрируют некоторое влияние внешнего поля, то что будет, думал я, если мы начнём использовать самые тонкие кристаллы и применим весь арсенал технологического оборудования? В тот момент я понял, что мы наткнулись на что-то действительно потрясающее. Вот это и была моя „Эврика!“».

Сотрудники лаборатории стали работать над новым направлением по четырнадцать часов в сутки без выходных и перерывов. В конце 2003 года статья была отправлена в журнал «Нейчэ», но была отвергнута, как не содержащая «существенного научного достижения».

— Вот так причина! — воскликнул удивлённый Андрей. — Нобелевский результат оказался несущественным!



Дзинтара вздохнула:

— Наука не свободна от субъективных суждений даже в экспериментальной области. Статья про графен, новую двумерную кристаллическую форму углерода, была опубликована в журнале «Сайенс» и принесла её авторам заслуженную славу, а в 2010 году — Нобелевскую премию. Манчестерский университет активно поддержал молодых исследователей и выстроил специально для них новый исследовательский Институт графена. Сейчас графен, моно-молекулярная прочная плёнка, или первый открытый двумерный кристалл, стал объектом пристального внимания промышленников. Из него собираются делать гибкие экраны, новые виды электронных устройств, фильтры для воды и многое другое. Его даже стали подмешивать в подошвы кроссовок, чтобы они были гибче и прочнее.

— А чем сейчас занимаются Гейм и Новосёлов? — спросила Галатея.

— Они двинулись дальше и создали много других мономолекулярных двумерных кристаллов, обладающих интереснейшими свойствами. Более того — они стали складывать эти двумерные кристаллы в трёхмерную стопку, получая материал с уникальными, заранее заданными свойствами. Нанотехнологии пришли в физику твёрдого тела и обещают новую революцию.

— Что это за физика твёрдого тела? — поинтересовалась девочка.

— О, физика твёрдого тела имеет давнюю историю, которую можно начать с кроманьонцев, живших в Европе более сорока тысяч лет назад. Они сумели среди множества камней, встречающихся на поверхности земли, найти самый прочный и удобный к обработке — кремень. Именно он стал популярным у кроманьонцев материалом, из которого они начали делать наконечники для стрел, кремневые ножи и топоры. Обсидиан, вулканическое стекло, тоже шло на изготовление ножей и наконечников стрел. Современные хирурги изучили обсидиановые ножи древних людей и нашли, что они острее, чем современные скальпели из нержавеющей стали. Если пациент имеет аллергию на металл, то для его лечения используют обсидиановые скальпели, правда с большой осторожностью, потому что они очень хрупкие. Умение найти подходящий камень и создать из него каменное орудие — это технология, которая лежит на стыке минералогии, физики твёрдого тела и механики. Сейчас она кажется древней и примитивной, но в своё время помогала кроманьонцам охотиться и выживать. Потом начались медный, бронзовый и железные века, в которые возникла такая наука, как металлургия. Умение древних оружейников учитывать физику твёрдых тел проявилось, например, в создании сабель из дамасской стали, в которых гибкость клинка соединялась с твёрдостью и режущими свойствами заточенной кромки.

Двадцатый век принёс расцвет физики твёрдых тел. Ключевым моментом стал 1912 год, когда в Мюнхене на заседании Баварской академии наук был заслушан доклад о рассеянии рентгеновских лучей на кристаллах. Первая, теоретическая, часть доклада была сделана Максом фон Лауэ из Цюриха, а во второй части его ассистенты Фридрих Вальтер и Пауль Книппинг продемонстрировали результаты эксперимента, подтверждающего теорию. Авторы доклада доказали, что рентгеновские лучи имеют волновую природу, а кристаллы обладают периодической атомной структурой. Через три года фон Лауз получил за открытие нового, очень плодотворного метода исследования кристаллов Нобелевскую премию.

— Всё-таки мне не очень понятно, что такое физика твёрдого тела, — покачала головой Галатея. — Кремниевые ножи, кристаллы, рентгеновские лучи… как это всё объединяется?

— Физика твёрдого тела пытается установить связь между физическими свойствами твёрдых тел, которые нас окружают, и их атомным строением, то есть связать макромир и микромир. Если мы хорошо изучим эти связи, то сможем создавать материалы с нужными нам свойствами — например сверхчистые кристаллы кремния и германия для полупроводников. Именно на примере кристаллов удобно изучать связь между крошечными атомами и нашим макромиром, потому что многократная повторяемость атомной структуры кристалла позволяет получить наглядное макроскопическое отображение этой структуры, например при облучении её рентгеновскими лучами.

Такова двойственная природа физики твёрдого тела. Поэтому в неё вносят важный вклад как квантовые механики, которые рассчитывают квантовое поведение атомов и электронов в твёрдых телах, так и экспериментаторы, которые изучают макроскопическое поведение, например сверхпроводящих образцов. Именно сверхпроводимость является одним из самых перспективных направлений физики твёрдого тела. Если бы были получены высокотемпературные сверхпроводники, работающие в условиях комнатных температур, то это стало бы новой технологической революцией. Экспериментаторы ищут такие сверхпроводники, но практически наугад, потому что хорошей квантово-механической теории высокотемпературных сверхпроводников ещё не создано.

В жилах нашей цивилизации течёт электрическая кровь, поэтому проводники, которые передают электрическую энергию на большие расстояния, и полупроводники, лежащие в основе всей электроники, играют колоссальную роль в экономике планеты. Сейчас специалисты работают над созданием триода на основе графена.

Не менее важным достижением физики твёрдого тела стало создание лазеров. Но об этом мы поговорим в следующей истории.


Примечания для любопытных

Сэр Андрей Константинович Гейм (р. 1958) — советский, нидерландский и британский физик, лауреат Нобелевской премии по физике 2010 года за исследование графена. Родился в г. Сочи. Член Лондонского королевского общества, рыцарь-бакалавр по указу королевы Елизаветы II.

Сэр Константин Сергеевич Новосёлов (р. 1974) — российский и британский физик, лауреат Нобелевской премии по физике 2010 года за исследование графена. Родился в г. Нижний Тагил. Член Лондонского королевского общества, рыцарь-бакалавр по указу королевы Елизаветы II. Его работы процитированы более ста тысяч раз.

Графен — первый известный истинно двумерный кристалл. Обладает высокой проводимостью, теплопроводностью и прочностью. Позже были открыты двумерные кристаллы кремния (силицен), фосфора (фосфорен), германия (германен).

Макс фон Лауэ (1879–1960) — немецкий физик. Лауреат Нобелевской премии за 1914 год «за открытие дифракции рентгеновских лучей на кристаллах».

Сказка о лазерах и киберах

На очень разных и далёких друг от друга континентах — в Северной Америке и в Австралии — примерно в одно и тоже время родилось двое мальчиков, которым было суждено встретиться в Европе спустя полвека и при весьма необычных обстоятельствах. В то время в Европе шла кровопролитная Первая мировая война, но отзвуки её не доносились до тихих уголков Америки и Австралии. Американца звали Чарльз Таунс, его юность прошла в спокойной благополучной обстановке. До двадцати лет он рос и учился в городке Гринвилл в Южной Каролине, где живописные горы, заросшие густым лесом, переходят в равнину с озерами, фермами и провинциальными городами.

Австралийца звали Александр. Он родился в семье российских революционеров Прохоровых, бежавших в Австралию из сибирской ссылки. Он был младшим в семье — у него было три старших сестры, которые тоже родились на севере Австралии, в небольшом городке Атертон, где обосновалась русская колония.