— А мы почему не боимся этой радиации? — спросила Галатея.
— Нас защищает магнитное поле Земли и земная атмосфера. Поселения людей на Луне или Марсе тоже можно сделать хорошо защищёнными, например с помощью толстого слоя лунного песка или марсианского грунта, но в межпланетном пространстве в небольшом корабле такого уровня защиты достичь трудно.
— Можно ли создать корабли, которые не таскают с собой топливо, а как-то добывают или получают его во время полёта? — заинтересовался Андрей.
— Американский физик Роберт Баззард предложил проект космического корабля на термоядерной тяге, собирающего по пути необходимое топливо из межзвёздного водорода с помощью магнитной ловушки. Другие проекты рассматривают ускорение космических кораблей с помощью мощных лазеров, установленных на Земле или Луне, которые давлением светового луча гонят очень лёгкие корабли в космическую даль.
— Очень лёгкие? — переспросила Галатея.
— Да, похожие на лист бумаги. Космонавта в такой конверт не засунешь, подобная технология применима разве что для межзвёздных автоматических зондов.
— А есть ли какие-то другие физические принципы для передвижения между звёздами? Пространственно-временные червоточины или какие-нибудь фантастические корабли, которые летят, цепляясь за вакуум? — настаивал Андрей.
— Я не знаю, — вздохнула Никки. — Но надеюсь, что вы, повзрослев, решите эту сверхсложную проблему. Ею уже всерьёз занимаются государственные организации и частные фонды. НАСА выделило Фонду Тау Зиро полмиллиона долларов на анализ возможности межзвёздных путешествий.
— Предположим, что мы научимся… — тут Галатея многозначительно посмотрела на брата, — … строить межзвёздные корабли. А куда нам на них отправиться в первую очередь?
— Тут выбор очень велик, — сказала Никки. — Но уже поздно, давайте обсудим наши космические планы завтра.
Артём Иванович Микоян (1905–1970) — советский авиаконструктор, соруководитель конструкторского бюро «Микоян и Гуревич». Самолёты «МиГ-1» и «МиГ-3» участвовали во Второй мировой войне. После войны в КБ было создано более десяти удачных типов боевых самолётов, включая первый сверхзвуковой советский самолёт «МиГ-19» (1952–1960, выпущен в количестве 6,5 тысяч экземпляров).
Михаил Иосифович Гуревич (1892/1893–1976) — советский авиаконструктор, соруководитель конструкторского бюро «Микоян и Гуревич».
Анатолий Григорьевич Брунов (1905–1972) — советский авиаконструктор, создатель двух выдающихся самолётов: реактивного «МиГ-15», который был выпущен в количестве 15 560 штук с 1947 по 1959 год (без учёта выпуска китайских вариантов самолёта) и стал самым массовым реактивным боевым самолётом в истории авиации, а также сверхзвукового «Миг-21», который был выпущен в количестве 11 496 штук (без учёта китайского производства) и стал самым распространённым сверхзвуковым самолётом в истории.
Роберт Баззард (1928–2007) — американский физик, предложивший проект межзвёздного корабля, собирающего в качестве топлива водород, рассеянный в космическом пространстве между звёздами.
Сказка о миллиарде неоткрытых миров
На следующий вечер разговор вернулся в космические дали. Никки сказала:
— Куда лететь космическим путешественникам? Есть ли у далёких звёзд планеты, аналогичные Земле или даже более комфортабельные и плодородные? Живут ли там инопланетяне, которые в чём-то похожи на нас? Эти вопросы будоражили лучшие умы человечества многие тысячелетия.
— Совершенно верно! Мой ум эти вопросы тоже будоражат! — заявила Галатея.
— Варианты ответов были предельно различны: одни полагали, что во Вселенной существует только одна планета, населённая разумными существами, — Земля; другие мыслители провозглашали бесчисленное множество обитаемых миров. Астрономы строили научные модели образования других солнечных систем, но они тоже давали очень разные ответы на вопрос о численности планет в космосе. Например, модель Канта предполагала, что многие звёзды окружены вращающейся газо-пылевой туманностью, из которой, как правило, вырастает семейство планет, расположенных вокруг звезды на определенном расстоянии, что позволяет поддерживать на них более-менее постоянные температурные условия. Так как планеты удалены от своего светила на разные дистанции, то среди них непременно найдутся благоприятные для жизни планеты, температура на которых позволяет существовать жидкой воде, то есть находится в узком интервале от 0 до 100 градусов Цельсия. Модель астронома Джинса, напротив, полагала существование протопланетного диска вокруг звёзд результатом редчайшего сближения двух светил, в результате которого гравитация одной звезды выдирала из другой клок материи, впоследствии превращавшийся в газопылевой диск, рождавший планеты.
Такие противоречивые теории строились на протяжении многих столетий. Только в конце XX века наука о планетах вокруг других звёзд перешла на новый уровень достоверности. В начале 1990-х годов двое астрономов — поляк Александр Волыщан и канадец Дейл Фрейл — на основании данных американского радиотелескопа Аресибо, находящегося на карибском острове Пуэрто-Рико, открыли, что пульсар, расположенный на расстоянии 2300 световых лет в созвездии Весы — его открыл сам Вольщан, — ведёт себя необычно: его частота, которая должна была быть постоянной, слегка меняется, словно вокруг пульсара движутся две или даже три планеты. Статью об этом открытии опубликовал самый престижный журнал, но она была встречена с большим скепсисом. Пульсар — это быстро вращающаяся нейтронная звезда, оставшаяся после взрыва сверхновой. Неужели после такого мощного взрыва возле звезды могли уцелеть какие-то планетные тела? Постепенно сомнения рассеялись, и к астрономам, обнаружившим планеты возле пульсара, пришла слава. Известный польский астроном Богдан Пачинский назвал это «величайшим открытием, сделанным польским астрономом после Коперника». Журнал «Астрономия» в 1998 году включил открытие первых планет возле другой звезды в список из двадцати пяти великих астрономических открытий.
Историю открытия далёких планет сейчас отсчитывают с 1988 года, когда группа канадских астрономов обнаружила признаки планеты возле звезды Гамма Цефея, но неточность методов не позволила утверждать это с уверенностью. Этот результат был подтверждён лишь в 2002 году. Безусловно, открытие Вольщана — Фрейла стало переломным пунктом в истории поиска планет возле других светил. Оно вызвало такой интерес и активность среди наблюдателей, что в последующие годы было открыто ещё несколько планет — уже возле обычных звёзд. Для поиска экзопланет, как стали называть планеты возле других звёзд, были разработаны специальные методы, например, их ищут по изменению спектра звёзды из-за воздействия на неё планеты…
— Как крохотная планета может повлиять на спектр огромной звезды? — удивилась Галатея.
— Даже небольшая планета заставляет звезду колебаться возле общего центра тяжести звёзднопланетной системы. Эти небольшие покачивания вызывают допплеровские смещения спектра звезды, которые вызваны изменением скорости далекого светила относительно земного наблюдателя.
Например, красная линия водорода, из-за которой хромосфера нашего светила светит красным светом, хорошо заметным при солнечных затмениях, при круговом движении далёкой звёзды смещается то в область более длинных волн, то в область более коротких. И эти изменения можно зарегистрировать точной аппаратурой. Ещё одним способом является наблюдение затмения звезды планетой…
— Ой, я снова не понимаю! — воскликнула Галатея, — Как крошечная планета может загородить огромную звезду?
— Конечно, планета не сможет заслонить собой гигантское светило. Но даже небольшая часть излучения, которое перехватывает планета, находясь между земным астрономом и диском звезды, даст важную информацию, которую можно расшифровать. Ничтожные доли процента изменения светимости звезды, если они повторяются с периодичностью орбитального движения, надёжно указывают на то, что у звезды есть планета. Астрономы ищут планеты и по воздействию их на окружающий диск, в котором они прорезают щели, образуют волны и резонансные сгустки. Планеты могут также менять наклон диска или вызывать в нём изгиб. Планеты возле Бета Пикторис сбрасывают кометные ливни на звезду, выдавая этим своё невидимое присутствие. По мере развития астрономической техники учёные научились получать и прямые фотографии планет и даже регистрировать спектры их атмосфер.
— А скоро учёные смогут получать фотографии поверхностей планет? Хотя бы очертания материков и океанов? Или, может быть, светящихся инопланетных городов? — спросил Андрей.
— Да, именно об этом думают учёные, готовя к запуску в космос оснащённый золотыми зеркалами крупнейший телескоп имени Джеймса Вебба и мечтая о ещё более крупных инструментах. Именно космические телескопы вызвали революционные изменения в области обнаружения далёких планет. Специализированный спутник «Кеплер», созданный для поиска планет возле других звёзд, привел к настоящему буму открытия экзопланет. С 2009 по 2013 год он, изучая лишь небольшой участок неба между Денебом и Вегой, открыл три с половиной тысячи кандидатов в экзопланеты. К первому января 2018 года было надёжно зарегистрировано 3726 планет возле 2792 звёзд. Из них 662 звезды имели более чем одну планету. Несколько сот планет из этого списка похожи по своим физическим параметрам на Землю. Ещё несколько тысяч планет находятся в очереди на регистрацию, дожидаясь дополнительных наблюдений.
— А почему «Кеплер» изучал только одну часть неба? — спросил Андрей.
— Потому что его поле зрения было слишком маленьким, чтобы успеть осмотреть всё небо. Но в 2013 году российской ракетой был запущен европейский астрометрический спутник «Гайя», который должен проанализировать положения миллиарда звёзд на всём небе. Матрица, которая установлена в современных фотоаппаратах, имеет размер в несколько квадратных миллиметров и содержит несколько миллионов пикселей. Матрица, которая работает на космическом аппарате «Гайя», имеет размер в половину квадратного метра и состоит из 938 миллионов пикселей — в десять раз больше, чем у матрицы «Кеплера». «Гайя» должна за пять лет сфотографировать всё небо семьдесят раз. По оценкам специалистов, «Гайя» не только даст самый подробный в истории каталог положений и движений звёзд, но и откроет около десяти тысяч экзопланет. Кроме того, этот телескоп детальнейшим образом измерит искривление света звёзд в гравитационном поле Солнца — эффект, предсказанный Эйнштейном и обнаруженный Эддингтоном в 1919 году в момент полного солнечного затмения, когда возле чёрного Солнца звёзды стали видны даже днём. Этот эффект позволяет непосредственно наблюдать структуру пространства-времени.