Непридуманные космические истории — страница 39 из 61

Глава 7Скачивая Солнце круглосуточно, семь дней в неделю: Solar Dynamics Observatory

На грани катастрофы

23 июля 2012 года на поверхности Солнца произошло несколько мощных взрывов подряд. Такие события называют корональными выбросами массы, и в этот раз они были равны по высвобожденной энергии взрыву тысяч ядерных бомб. Их сила заставила облака намагниченной плазмы массой в миллиарды тонн устремиться в космос со скоростью 3000 км/с – это в четыре раза быстрее, чем при обычном солнечном извержении.

Так начался один из самых сильных солнечных штормов за всю историю наблюдений.

Мог ли этот «мегашторм» задеть Землю? Если бы так произошло, то начались бы отключения света по всему миру, взрывы электрических трансформаторов и перегорания всех устройств, включенных в розетки. Связь на всем земном шаре прервалась бы, потому что спутники, при помощи которых работают телефоны, телевидение, радио, Интернет и военная связь, могли бы лишиться энергии, управления и даже, возможно, выйти из-под контроля наземных ЦУПов и начать кувыркаться, утратив ориентацию. Астронавты и космонавты на Международной космической станции оказались бы в серьезной опасности подвергнуться воздействию радиации высокой интенсивности от бомбардировки солнечными частицами, а бортовые системы станции могли выйти из строя. Повреждения, вызванные последствиями такой солнечной бури, человечество могло бы устранять годами, и негативное воздействие на экономику одних только Соединенных Штатов могло превысить 2 трлн долларов, а это в двадцать раз больше, чем ущерб от бедствия наподобие урагана «Катрина», в денежном выражении. Наше зависящее от технологий общество было бы искалечено.


Этот снимок был сделан спутником Solar and Heliospheric Observatory[58], совместно созданным NASA и Европейским космическим агентством в июле 2012 года. На правой стороне заметно облако солнечного материала, извергнутого Солнцем в процессе одного из самых быстрых зарегистрированных корональных выбросов массы. Источник: Европейское космическое агентство и NASA / проект SOHO


К счастью, флотилия солнечных обсерваторий внимательно следила за развитием этого космического события, и астрономы знали, что Земля не окажется «на линии огня». Но грань катастрофы была близко. Если бы тот корональный выброс случился бы несколькими днями раньше, то нашей планете грозила бы глобальная катастрофа, несравнимая ни с чем из того, что нам доводилось пережить.


Так спутник Solar Dynamics Observatory[59] выглядит на орбите (иллюстрация). Источник: NASA


Чтобы иметь возможность постоянно наблюдать Солнце, ученые построили с помощью NASA орбитальный научный аппарат Solar Dynamics Observatory. С помощью этого спутника мы можем видеть Солнце таким, каким еще никогда не видели.

– SDO изучает Солнце почти в постоянном режиме и следит за возникновением солнечных бурь, которые управляют нашей космической погодой здесь, в окрестностях Земли, – говорит Том Вудс, ответственный научный исполнитель по программе одного из инструментов на борту SDO под названием Extreme Ultraviolet Variability Experiment[60]. Детальное изучение солнечных бурь очень важно, потому что эти события могут повлиять на бо́льшую часть техники, которую мы используем, – например, связь, GPS и другие навигационные системы. И одна из ключевых задач SDO – как можно лучше понять, что является причиной солнечных штормов и как мы можем предсказывать их.

Спутник SDO отличается как от всех остальных космических станций «солнечного патруля», так и от наземных солнечных обсерваторий, потому что у него совсем иное качество научных инструментов и выдает он на-гора совершенно не сопоставимый объем научных данных. Шесть камер высокого разрешения (с матрицами 4000 на 4000 пикселей) делают снимки Солнца каждые 0,75 секунды, и их разрешающая способность в десять раз выше, чем у телевизионной камеры HD-качества. SDO создает удивительные видеокадры солнечной поверхности, на которых раскрываются филигранные детали происходящего. Эта техника позволяет астрономам видеть особенности и явления солнечной активности, которые не были известны до запуска SDO на орбиту в 2010 году.

Кроме того, SDO стал одним из первых космических аппаратов, который производит огромное количество данных. Три напряженно работающих научных инструмента на его борту собирают 1,5 терабайта данных ежедневно. Этот объем аналогичен тому, как если бы кто-то записывал по музыкальному компакт-диску каждые 36 секунд или каждый день загружал 380 полнометражных фильмов или 500 000 песен.


Насколько велико Солнце по сравнению с планетами? На этой инфографике можно наглядно сопоставить его линейные размеры с размерами всех планет Солнечной системы. Источник: NASA / лаборатория реактивного движения


До того как мы познакомимся с SDO поближе, давайте внимательно взглянем на Солнце.

Как работает Cолнце?

Есть веская причина, почему область пространства по соседству с нами называется Солнечной системой. Солнце – центр нашей планетарной системы и в буквальном, и в фигуральном смыслах. Оно содержит 99,9 % всего вещества Солнечной системы и является источником жизни и энергии у нас на Земле. Сила тяготения Солнца доминирует надо всеми планетами и объектами, которые обращаются вокруг него. По всей видимости, с самого начала человеческой истории люди понимали, насколько Солнце важно для нашего мира и как оно влияет на последовательную смену дня и ночи, времен года и жизненных циклов.


Схема, условно показывающая Солнце в разрезе: можно видеть различные его слои. Источник: NASA


Около 4,6 млрд лет назад облако космического газа и пыли сгустилось в пространстве после взрыва звезды – такое явление называется взрывом сверхновой. Облако начало сжиматься, формируя протосолнечную туманность. Если фигурист, крутясь, прижмет к своему телу обе руки, он будет вращаться быстрее, и точно так же облако начало вращаться быстрее, сжимаясь. В нем формировался плотный горячий центр, который в конце концов образовал звезду – наше Солнце.


Тонкими линиями показана структура магнитного поля в атмосфере Солнца, определенная на основе магнитных измерений на его поверхности. Схема наложена на изображение Солнца в крайнем ультрафиолетовом спектральном диапазоне (длина волны 171 ангстрем). Этот тип излучения невидим для наших глаз, но условно изображен золотистым цветом. Источник: NASA / проект SDO / группа Солнечно-атмосферной съемки (AIA) / Солнечная и астрофизическая лаборатория Lockheed Martin (LMSAL)


Солнечная система сформировалась из оставшегося газа и пыли, которые обращались вокруг новорожденной звезды. Благодаря мощной гравитации Солнца планеты, астероиды, кометы и прочие тела постоянно продолжают двигаться, делая оборот за оборотом вокруг него.

Звезды, и Солнце в том числе, не горят. Скорее, то, что происходит в их недрах, можно сравнить с непрерывно взрывающимися водородными бомбами или гигантскими термоядерными реакторами. Звезды сжимаются под действием собственного веса, сокрушая все, что находится в их центре, и создавая гигантское давление газа. Благодаря этому давлению атомы водорода соединяются вместе, образуя газ гелий в результате процесса, который называется термоядерный синтез. В центральной области Солнца, в его ядре, каждую секунду синтезу подвергаются миллионы тонн водорода, высвобождая гигантскую энергию непрерывным потоком. Несмотря на то что родившейся в ядре энергии для того, чтобы добраться до поверхности Солнца, могут потребоваться миллионы лет, с того момента как свет Солнца срывается с его поверхности, ему нужно лишь восемь минут, чтобы преодолеть 150 млн км пространства, отделяющего Землю от Солнца.

Солнце можно разделить на два принципиально разных региона – внутренний и внешний. В каждом из них различают три слоя. Как мы уже поняли, ядро – точка, где начинается все действие благодаря тому, что термоядерная реакция создает температуру в 14 000 000 °C. Его окружает так называемая зона лучистого переноса, где тепло и свет медленно поднимаются от ядра в вышележащие области, и путь их через этот слой занимает миллионы лет. На третьем «этаже», конвективной области, тепловая энергия начинает активное движение: здесь материал Солнца вскипает и бурлит, и перенос тепла через него к поверхности занимает всего лишь около месяца.

Во внешнем регионе первый слой – это видимая поверхность Солнца, она известна как фотосфера. На ней астрономы могут наблюдать детали, такие, как солнечные пятна. Здесь Солнце «остывает» почти до 5500 °C. Следующие два слоя можно считать солнечной атмосферой: вначале идет хромосфера, активная область, где мы можем наблюдать струйные извержения (филаменты) и протуберанцы, рвущиеся прочь от Солнца, и где температура, как это ни странно, начинает расти и вчетверо превышает температуру в фотосфере – достигая 20 000 °C. Следующий, самый внешний слой под названием корона – это область, где газ разогревается до температур, превышающих 1 000 000 °C. Солнце настолько горячее, что бо́льшая часть газа в нем находится на самом деле в состоянии плазмы – это газообразная материя, в которой электроны отделены от ионов, таким образом, получается перегретая смесь заряженных частиц.

Одна из самых больших загадок в науке о Солнце – почему температура возрастает с высотой в хромосфере и короне. Ученые подозревают, что магнитная активность в солнечной атмосфере служит источником энергии помимо прямого нагрева.

Изучение природы солнечного магнитного поля является ключом к пониманию сразу нескольких аспектов солнечной активности. Однако у астрономов пока нет полного представления обо всех происходящих там процессах. Им известно, что, когда заряженные частицы солнечной плазмы находятся в движении, они естественным образом создают магнитные поля, которые изгибаются и замыкаются в петли. Когда эти поля взаимодействуют, они могут неожиданно выделять большое количество энергии в виде корональных выбросов массы или