Мы стали разбираться в том, какие еще прежде запрещенные вращательные симметрии становятся возможными при квазикристаллическом порядке. Ответ был, мягко говоря, невероятным – все. Симметрии седьмого, восьмого, девятого порядка – буквально бесконечное множество новых возможностей, считавшихся запрещенными, были теперь разрешены. Восхитительный пример квазипериодического замощения с симметрией седьмого порядка показан ниже.
Теперь мы с Довом совершали одно за другим такое количество открытий и перед нами раскрывалось так много новых направлений для исследования, что становилось трудно понять, когда стоит остановиться и начать писать статью. Думая, что тут конкурентов у нас нет, я принял роковое решение продолжать работать и отложить публикацию наших результатов, пока мы не достигнем еще большего прогресса.
Начало 1980-х годов было одним из самых плодотворных периодов в моей карьере. Дов был не единственным работавшим со мной талантливым аспирантом. Совместно с Энди Олбрехтом мы разбирались с одной новой и весьма интересной идеей в области космологии – инфляционной теорией Вселенной, – которую тогда только-только выдвинул физик из Массачусетского технологического института по имени Алан Гут.
Немногие научные теории предстают перед нами в законченном виде при первом же появлении, и инфляционная теория не была исключением. Алан предположил, что инфляция – гипотетический период быстрого расширения в течение нескольких мгновений после Большого взрыва – потенциально может по крайней мере отчасти объяснить однородность текущего распределения материи и энергии в нашей Вселенной. Однако для этого ему пришлось допустить, что инфляция спустя очень короткое время прекращается. И тут обнаружилась проблема. Алану никак не удавалось объяснить остановку инфляции. Мы с Энди, а также Андрей Линде, который независимо занимался этой темой в Советском Союзе, смогли справиться с этой ключевой проблемой.
Наша “новая инфляционная теория” была быстро признана. Она произвела взрывной эффект, с которого начался период плодотворных инноваций в космологии, астрофизике и физике элементарных частиц, продолжающийся по сей день. В отличие от моей работы с Довом над проблемой новых форм вещества, новую инфляционную космологию исследовало множество людей, и многие из них были жесткими конкурентами. Также было много важных последующих проектов, которые просто нельзя было игнорировать.
В тот же период времени я, однако, потихоньку проверял реакцию научного сообщества на нашу новую квазикристаллическую теорию. Я начал неформально обсуждать ее с известными специалистами, занимавшимися физикой конденсированного состояния, но, к моему удивлению, реакция всегда была одинаково обескураживающей: “Ваша с Довом творческая концепция новой формы вещества математически возможна, но в сравнении с простыми принципами периодических кристаллов она выглядит слишком сложной, чтобы реализоваться в физическом мире”.
Такое отношение вполне можно понять. В конце концов, мы с Довом ставили под сомнение вековую научную мудрость, выдвигая идею о новом состоянии вещества на основании изучения одних только абстрактных замощений. Нам требовалось экспериментальное доказательство существования таких комбинаций атомов, которые сами организуются в истинные квазикристаллы. Без этого наша идея оставалась лишь очередной оторванной от реальности теоретической фантазией.
Дов, будучи менее чувствительным к критике, чем я, хотел немедленно опубликовать нашу основную концепцию. Мне же хотелось подождать, пока наши идеи не обрастут конкретикой. Я также хотел получить возможность делать проверяемые прогнозы по обнаружению новой формы вещества в экспериментах – это необходимая составляющая любой научной теории. Я полагал, что без этого наша работа, вероятно, будет отвергнута. Так что и публиковать ее пока не имело смысла.
В 1983 году мы с Довом достигли компромисса. Мы договорились защитить наш интеллектуальный вклад за счет патентного раскрытия идеи и подали соответствующую заявку при поддержке бюро технологического лицензирования Пенсильванского университета. Заявка должна была представить нашу концепцию и формально закрепить наш приоритет. Однако раскрывать наши идеи широкому научному сообществу мы не собирались, пока не достигнем большего прогресса.
Заявка, частично воспроизведенная справа, описывала наши строительные блоки, ромбоэдры, и обеспечивающие их совмещение замки. В ней говорилось, что соединения устроены так, чтобы строительные блоки были вынуждены образовывать некристаллическую структуру с симметрией икосаэдра. Также в ней объяснялось, каким образом эта идея может потенциально привести к новому фазовому состоянию вещества со свойствами, отличными как от жидкостей, так и от кристаллов. В заявке 1983 года мы с Довом называли наше теоретическое изобретение “кристаллоидами”, но позднее поменяли термин на “квазикристаллы”.
Было ли все это лишь абстрактными построениями, как утверждали критики, или это действительно была корректная научная теория, которую можно как-то проверить? И как нам распознать квазикристалл, если посчастливится его найти? Мы с Довом потратили месяцы на утомительные расчеты и в итоге обнаружили, что ответ довольно прост. Обычный рисунок рентгеновской или электронной дифракции должен был показать квазипериодичность и запрещенную симметрию в расположении атомов.
По сравнению с кристаллом, дифракционная картина у квазикристалла гораздо богаче. Она сложнее по структуре, в частности потому, что формируется атомами, повторяющимися с разными частотами, соотношение которых выражается иррациональным числом вроде золотого сечения.
Если бы электроны или рентгеновские лучи могли магическим образом испытывать дифракцию только на одном типе атомов в квазикристалле, они порождали бы на дифракционной картине разделенные равными интервалами четкие точки, известные как брэгговские пики. Однако в реальности рентгеновские лучи и электроны дифрагируют на всех атомах квазикристалла. Различные подгруппы дают разные точки на дифракционной картине, соответственно различным расстояниям между атомами. А икосаэдр еще и обладает множеством симметрий, что также добавляет сложности.
Предсказанные нами дифракционные картины имели разный вид в зависимости от того, как был направлен электронный или рентгеновский пучок – вдоль оси вращательной симметрии пятого, третьего или второго порядка. Иллюстрация справа демонстрирует рассчитанную нами дифракционную картину для луча, идущего вдоль оси “невозможной” симметрии пятого порядка.
Мы вывели математическую формулу, стоящую за секретной симметрией, и смогли сделать смелое предсказание, проверяемое экспериментально: дифракционная картина для квазикристалла должна состоять из четких точек, образующих узор, подобный снежинке.
Представленный справа архивный рисунок – это первый когда-либо рассчитанный подобный узор. Наша компьютерная программа рисовала окружности с центрами в каждой из предсказанных точек. Радиусы этих окружностей выбирались пропорционально предсказанной интенсивности дифрагированных рентгеновских лучей. Созданный нами рисунок был первой визуальной репрезентацией тех ярких и тусклых точек, которые мы ожидали увидеть на дифракционной картине реального квазикристалла.
Если бы была возможность увидеть еще более слабые точки, то оказалось бы, что между любой парой пятен есть еще много других. И между каждой парой тех пятен были бы еще более тусклые, и так далее. Нарисуй мы с Довом по окружности для каждого предсказанного пятна, узор стал бы таким насыщенным, что эти окружности слились бы в одно сплошное бесформенное белое облако. Мы знали, что в экспериментах выявляются только самые яркие пятна, и решили, что наша модель будет достаточно хорошим приближением к характерной дифракционной картине квазикристалла.
Этим рисунком мы с Довом сделали предсказание, которое можно было использовать для проверки и потенциального опровержения нашей теории. Так что теперь мы подошли к очередной вехе на нашем пути. Пришло время публиковаться? И вновь я сдержал этот порыв. Я знал, что нам понадобится нечто большее, чтобы столь радикальная теория была воспринята всерьез. Нам нужно было доказать, что ромбоэдрические блоки, использованные в нашей теоретической модели, можно было заменить реальным веществом.
К лету 1984 года с моих плеч наконец свалились трудоемкие обязательства по работе над новой инфляционной теорией. Это позволило мне выделять значительное количество времени, необходимое для финальной стадии нашего исследования квазикристаллов. Получив длительный научный отпуск в Пенсильванском университете, я отправился в Исследовательский центр IBM имени Томаса Дж. Уотсона, где в прошлом провел большую часть своих работ по атомной структуре аморфных металлов.
“Нет такого зверя!” – вероятно, подумал Дэн Шехтман, глядя на странные образцы под электронным микроскопом. Израильский ученый в возрасте 41 года случайно натолкнулся на вещество, обладающее всеми теми невозможными свойствами, которые предсказывали мы с Довом, хотя у него не было ни намека на наши идеи, ни понимания всей значимости его открытия. И все же Шехтман отдавал себе отчет в том, что столкнулся с чем-то удивительным. В итоге это принесло ему Нобелевскую премию по химии в 2011 году.
Шехтман работал приглашенным специалистом по микроскопии в Национальном бюро стандартов вместе с Джоном Каном, с которым он познакомился, когда был аспирантом в Технионе – ведущем израильском технологическом институте. Кан считался корифеем в области физики конденсированного состояния и был особенно известен своими исследованиями процессов, происходящих при охлаждении и затвердевании металлических жидкостей.
Кан предложил Шехтману взять двухгодичный отпуск в Технионе, чтобы принять участие в масштабном проекте, который финансировался Национальным научным фондом и Агентством перспективных оборонных исследований. Цель проекта состояла в том, чтобы синтезировать и классифицировать как можно больше различных алюминиевых сплавов, получающихся путем быстрого охлаждения жидких смесей алюминия с иными металлами. Сами сплавы создавались другими учеными. Шехтману же предлагалось с помощью электронного микроскопа анализировать, идентифицировать и классифицировать образцы. Это была важная для материаловедческого сообщества работа, поскольку алюминиевые сплавы имеют множество применений. Но сама работа была довольно скучной и однообразной.