Часть IIПоиски начинаются
Глава 7Превзошла ли нас природа?
“Кто-нибудь когда-нибудь находил природный квазикристалл?”
Жизнерадостный седоволосый сотрудник поспешил к кафедре со своим вопросом, как только я закончил лекцию. Я тогда только приступил к работе на физическом факультете в Принстоне и решил посвятить свой первый доклад истории квазикристаллов. На тот момент прошло уже пятнадцать лет с тех пор, как мы с Довом Левином ввели это понятие.
Я не мог припомнить задававшего вопрос человека по факультетским собраниям и вскоре понял почему. Он представился как Кен Деффайес с факультета геолого-геофизических наук. Я был удивлен, что он пришел на мой доклад. Как правило, еженедельные коллоквиумы посещали только физики и астрофизики.
Вопрос мне понравился, поскольку демонстрировал понимание сути моей лекции. Я представил ряд новых теоретических аргументов в пользу того, что квазикристаллы могут быть такими же стабильными и легко растущими, как обычные кристаллы. Поэтому было естественно, что как геолог он захотел узнать, известно ли что-то об их существовании в природе.
– Нет, – ответил я. – Я раньше пытался наугад искать их в музейных коллекциях, но безуспешно. Однако, – добавил я с улыбкой, – у меня есть одна идея для их систематического поиска.
Глаза Кена расширились, и он попросил меня описать эту идею.
Я ответил ему, что она включает автоматизированный поиск по компьютерной базе данных, содержащей десятки тысяч дифракционных картин. Часть из них получена для синтетических материалов. Но почти десять тысяч – для природных минералов. Несколькими годами ранее я привлек аспиранта, чтобы тот снимок за снимком прочесал эту базу данных в поисках потенциальных квазикристаллов, однако его энтузиазм быстро угас. Позже я понял, что процесс проверки, вероятно, можно полностью автоматизировать. Можно сузить поиск с помощью компьютерной программы, получить образцы наиболее перспективных кандидатов и проверить их в лаборатории.
Кен счел это отличной идеей и сказал мне, что знает человека как раз для такой работы – талантливого студента по имени Питер Лу. Питер выигрывал золотые медали в соревнованиях “Камни, минералы и окаменелости” на четырех последовательных турнирах национальной научной олимпиады для школьников. Теперь он учился на физическом факультете, а это значит, пояснил Кен, что к следующему году ему предстоит найти тему для дипломной работы. У Питера также имелся опыт работы с электронным микроскопом, что могло пригодиться в случае обнаружения потенциальных квазикристаллов.
Кен также посоветовал мне связаться с Яо Нанем, директором Принстонского центра визуализации и анализа, специалистом по электронной микроскопии. Нань, по словам Кена, был одаренным учителем, наставником Питера. А еще он был высококлассным специалистом по получению дифракционных картин необычных материалов.
На следующий день Кен познакомил меня с Питером, который, похоже, идеально подходил для этой работы. Питер был энергичным и амбициозным студентом в поисках достойного проекта. Он был невысокого роста и, несмотря на молодость, говорил авторитетным тоном. На моей лекции он не присутствовал, но чувствовал, что услышал от Кена достаточно, чтобы уверенно говорить о проекте и своей квалификации.
Затем Питер и Кен позвали меня встретиться с Яо Нанем в Центре визуализации и осмотреть оборудование. Там были электронные микроскопы и масса других дорогих инструментов для изучения различных материалов. Оборудование предоставлялось ученым и студентам факультетов всего университета, а также экспертам из близлежащих промышленных лабораторий. Нань с энтузиазмом отнесся к нашему проекту и выразил готовность оказать нам любую помощь, включая гарантированное выделение времени для работы с электронным микроскопом Центра. Когда он показывал нам оборудование, я обратил внимание на его спокойную сдержанность и опыт и сразу понял, что он мог бы стать ценным членом команды.
Обзаведясь поддержкой Кена, Питера и Наня, я посчитал, что располагаю командой людей с необходимым сочетанием знаний и навыков, чтобы продвинуться в систематическом поиске природных квазикристаллов. Так я всерьез приступил к так долго откладывавшимся поискам.
Хотя таланты Питера касались в основном минералогии и экспериментальной физики, он быстро освоил основы квазикристаллической математики. Мы начали работу над компьютерным алгоритмом, который позволил бы на основании дифракционных картин, хранящихся в Международном центре дифракционных данных (International Centre for Diffraction Data, ICDD), оценить вероятность, с какой тот или иной минерал-кандидат может являться квазикристаллом.
ICDD – это некоммерческая организация, которая получает из лабораторий по всему миру информацию о материалах и их порошковых рентгенограммах. Та хранится в зашифрованной базе данных, а ученые и инженеры покупают подписку, чтобы получить к ней доступ. Обычно специалисты используют эту базу данных для сравнения изучаемых ими дифракционных картин с теми, что были получены ранее для известных материалов.
ICDD также предоставляет программное обеспечение для извлечения информации из своей базы данных, однако их программа оказалась слишком неудобной для наших целей. За раз она давала доступ только к одной порошковой дифрактограмме вместе с большим объемом описательной информации, которая в нашем случае была излишней.
Для проведения статистического анализа нам нужен был доступ только к самим порошковым дифрактограммам. Поэтому мы написали в ICDD, объяснили суть нашего проекта и попросили разрешения работать с расшифрованной версией их базы данных. Это позволило бы нам написать собственное программное обеспечение для извлечения необходимой информации и сжатия ее в один большой файл для нашего анализа. Мы не знали, чего ожидать, ведь мы просили особого доступа к их самому ценному ресурсу. Но они щедро предоставили нам все необходимое, даже не взяв за это денег.
Следующее препятствие на нашем пути состояло в том, что работать приходилось только с порошковыми дифракционными картинами. Если бы ICDD мог предложить нам дифрактограммы единичных зерен, то отделить квазикристаллические структуры (на следующей странице вверху слева) от кристаллических (справа) можно было бы за полдня.
ICDD не собирает дифракционные картины единичных зерен, поскольку для большинства материалов их просто нет. Чтобы получить высококачественную дифракционную картину отдельного зерна, требуется образец определенного размера и толщины. Для большинства изучаемых минералов и материалов подбирать образцы такого типа слишком сложно и долго.
Вместо этого ученые берут множество крошечных отдельных зерен, ориентированных под случайными углами друг относительно друга. Такой “порошок” из зерен может образоваться естественным путем, а может быть легко приготовлен измельчением одного или нескольких небольших образцов до порошкообразного состояния.
Под рентгеновскими лучами совокупность зерен порождает так называемую рентгеновскую порошковую дифрактограмму, которая объединяет дифракционные картины от всех зерен. Например, если все отдельные квазикристаллы дают четкую точечную дифракционную картину вроде той, что изображена внизу слева, то порошковая дифрактограмма будет похожа на ту, что представлена справа.
Порошковая дифрактограмма похожа на то, что вы увидели бы, если бы поместили четкую точечную дифракционную картину на диск проигрывателя и закрутили бы его так, чтобы каждая точка размазалась в кольцо. На рисунке слева в расположении точек четко видна симметрия десятого порядка. На порошковой дифрактограмме справа вся информация о симметрии потеряна. Остались только кольца разного радиуса и яркости.
Представьте, что у вас есть только правое изображение. Смогли бы вы определить, что оно получено для порошка из случайным образом ориентированных зерен, каждое из которых по отдельности дает рисунок, подобный тому, что представлен слева? Именно на этот вопрос мы и пытались ответить. Довольно удивительно, что, как выяснили мы с Питером, в радиусах и интенсивностях колец на рисунке справа все же содержится достаточно информации, чтобы идентифицировать потенциальные квазикристаллы и прийти к уже знакомому нам, похожему на снежинку узору, изображенному слева.
Диаграмма на следующей странице суммирует все то, что нам удалось обнаружить. На графике сопоставляются два свойства, которые мы вычисляли для каждой порошковой дифракционной картины из каталога ICDD. По горизонтальной оси отложено, насколько близки кольца на порошковой дифрактограмме образца к идеальному набору радиусов безупречного икосаэдрического квазикристалла. По вертикальной оси отложено, насколько хорошо соответствуют друг другу их интенсивности.
Два серых квадрата в нижней левой части диаграммы представляют два известных синтетических квазикристалла, которые уже были в каталоге ICDD. Получается, что на деле эти два квадрата настолько близки к совершенству, насколько это возможно. Если бы порошковая дифрактограмма природного минерала имела показатели, близкие к этим квадратам, резонно было бы ожидать, что это квазикристалл, каждое зерно которого дает точечную дифракционную картину.
Точки на диаграмме представляют результаты, полученные для более чем девяти тысяч минералов и оказавшиеся слишком далеко от серых квадратов, чтобы считать эти образцы многообещающими кандидатами. Кружки представляют минералы, порошковые дифракционные картины которых попадают ближе всего к квадратам, что наводит на мысль о потенциальных квазикристаллах.
Кружки соответствовали минералам, которые нам с Питером предстояло теперь найти и доставить в нашу принстонскую лабораторию для дальнейшего изучения. Как только образец поступал, его нарезали на тонкие слои и изучали под электронным микроскопом, чтобы определить, является ли он истинным квазикристаллом.