Невозможность второго рода. Невероятные поиски новой формы вещества — страница 4 из 54



Однако, если при новой попытке ваш друг повернет замощение на 90° (правый рисунок), вы не сможете заметить никаких изменений. Плитки будут выглядеть в точности так же, как и первоначально. Этот поворот на 90° рассматривается как вращательная “симметрия”. На самом деле 90° – это минимальный угол поворота, являющийся симметрией для узора из квадратов. Любой поворот квадрата менее чем на 90° меняет его видимую ориентацию.

Очевидно также, что два поворота на 90°, то есть в сумме на 180°, тоже будут симметрией. Это верно и для трех (270°), и для четырех (360°) таких поворотов. Поскольку требуется четыре таких поворота для совершения полного оборота (360°), о квадратном замощении говорят, что оно обладает симметрией четвертого порядка.

Давайте теперь предложим вашему другу замощение, состоящее из одинаковых рядов прямоугольников, ориентированных длинной стороной горизонтально. При повороте на 90° такое замощение будет выглядеть иначе, поскольку длинные стороны окажутся ориентированы вертикально. Однако поворот на 180° сделает его неотличимым от первоначального. Поэтому в случае прямоугольников 180° – это наименьший поворот, который является симметрией. Два таких поворота дают 360°. Так что замощение из прямоугольников обладает симметрией второго порядка.



Аналогично для параллелограммов единственный поворот, который оставляет замощение без изменений, – 180°. Поэтому замощение параллелограммами также имеет вращательную симметрию второго порядка.

Применив этот же подход к равносторонним треугольникам, мы обнаружим симметрию третьего порядка. А в случае шестиугольников – шестого.

Наконец, существует еще одна возможная вращательная симметрия, которую можно получить на основе каждого из пяти шаблонов. Например, если краям любой из используемых фигур придать неправильную форму, то единственным поворотом, оставляющим узор неизменным, будет полный оборот на 360° – или симметрия первого порядка.

И на этом список возможностей заканчивается. Симметрии первого, второго, третьего, четвертого и шестого порядка исчерпывают список симметрий, возможных для двумерных периодических замощений, – этот факт известен человечеству уже не одно тысячелетие. Древнеегипетские мастера, например, использовали вращательные симметрии для создания прекрасных мозаик. Однако лишь в XIX веке эти выработанные методом проб и ошибок приемы были в полной мере объяснены строгой математикой.

Вернемся, однако, к плиточному полу в нашей душевой. Тот факт, что ваш подрядчик не может сделать периодическое замощение с помощью одних только правильных пятиугольных плиток, не оставляя больших щелей, нарушающих гидроизоляцию, служит наглядной демонстрацией того, что симметрия пятого порядка невозможна согласно законам кристаллографии. Но это не единственная запрещенная симметрия. То же относится к симметриям седьмого, восьмого и любого другого более высокого порядка.

Не забывайте, что, согласно открытию Гаюи, кристаллы периодичны, подобно плитке на вашем полу с регулярно повторяющимся рисунком. Соответственно, те же ограничения, что применимы к замощениям, будут применимы и к трехмерным кристаллам. Лишь некоторые формы могут соединяться друг с другом, не оставляя зазоров.

Однако, несмотря на это сходство, трехмерные кристаллы намного сложнее плитки для пола, поскольку они могут иметь различные вращательные симметрии вдоль разных лучей зрения. Симметрии меняются в зависимости от точки, с которой наблюдается объект. Однако вне зависимости от направления взгляда для регулярно повторяющихся трехмерных структур и периодических кристаллов возможны только симметрии первого, второго, третьего, четвертого и шестого порядка – те же, что и для двумерных плиток. И с какой бы стороны вы ни смотрели на объект, вращательная симметрия пятого порядка всегда запрещена, так же как симметрии седьмого, восьмого и любого более высокого порядка.

Сколько различных сочетаний симметрий, наблюдаемых с разных направлений, может встретиться в периодических кристаллах? Поиск ответа на этот вопрос был серьезным испытанием для математической мысли.

Эта задача была окончательно решена в 1848 году французским физиком Огюстом Браве, который показал, что существует ровно 14 таких комбинаций. Сегодня они известны как “решетки Браве”.

Однако проблема понимания кристаллических симметрий этим не исчерпывалась. Позднее была разработана более полная математическая классификация, совмещающая вращательные симметрии с еще более сложными симметриями – “зеркальными”, “центральными” и “скользящими”. При объединении всех этих дополнительных вариантов общее число допустимых симметрий возрастает с 14 до 230. Однако даже при таком многообразии симметрия пятого порядка остается запрещенной для любых направлений.

В этих открытиях красота математики самым удивительным образом совмещается с красотой природного мира. Все эти 230 возможных трехмерных схем кристаллов[3] были найдены при помощи чистой математики. И каждый из этих рисунков был обнаружен в природе при раскалывании минералов.

Замечательное соответствие абстрактных, математических схем кристаллов и реальных, найденных в природе образцов было косвенным, но убедительным свидетельством в пользу того, что вещество состоит из атомов. Но как именно расположены эти атомы? Раскалывание кристаллов позволяет выяснить форму их строительных блоков, но этот метод слишком груб для определения того, как внутри них расположены атомы.

Точный инструмент, позволяющий получить эту информацию, был изобретен в 1912 году немецким физиком Максом фон Лауэ в Мюнхенском университете. Он обнаружил, что можно точно определить скрытую симметрию вещества, просто облучая небольшой образец рентгеновским пучком.

Рентгеновские лучи – это разновидность световых волн, длина которых настолько мала, что они легко проходят по каналам пустого пространства между регулярно расположенными рядами атомов в кристаллах. Когда рентгеновские лучи, прошедшие сквозь кристалл, попадают затем на фотобумагу, они, как показал фон Лауэ, интерферируют друг с другом, порождая характерный узор из четко очерченных точек, известный как рентгеновская дифракционная картина.

Когда рентгеновские лучи проходят по кристаллу вдоль оси его вращательной симметрии, получающийся узор из точек дифракционной картины обладает в точности такой же симметрией. Просвечивая кристалл рентгеновскими лучами с разных направлений, можно выявить весь набор симметрий его атомной структуры. А уже исходя из этих данных можно затем определить решетку Браве для кристалла и форму его строительных блоков.



Вскоре после открытия фон Лауэ еще один прорыв в этой области совершили британские физики Уильям Генри Брэгг и его сын Уильям Лоуренс Брэгг. Тщательно управляя длиной волны и направлением рентгеновских лучей, они показали, что по состоящей из точек дифракционной картине можно определить не только симметрию, но и конкретное расположение атомов внутри кристалла. Точки на этой дифракционной картине стали называть “брэгговскими пиками”.

Эти два прорывных метода сразу стали незаменимыми в исследованиях вещества. В последующие десятилетия по всему миру были получены десятки тысяч дифракционных картин различных природных и синтетических материалов. Позднее ученые стали получать еще более точную информацию, заменяя рентгеновские лучи электронами, нейтронами или высокоэнергичным излучением, которое порождается, когда пучок заряженных частиц, движущихся с релятивистскими скоростями, поворачивает под действием магнитов в синхротроне – мощном ускорителе элементарных частиц. Однако независимо от используемого метода исходные правила симметрии, выведенные в работах Гаюи и Браве, оставались непогрешимыми.

Эти правила, основанные на сочетании математических рассуждений и собранных экспериментальных результатов, надежно закрепились в сознании ученых. Тот факт, что вещество может обладать только рядом определенных, давно описанных симметрий, казался настолько надежно установленным, насколько вообще может быть надежен научный принцип.

Пасадена, 1985 год

И вот он я – стою перед Ричардом Фейнманом и объясняю ему, что эти давно установленные правила ошибочны.

Кристаллы оказались не единственной возможной формой вещества с упорядоченно расположенными атомами и точечными дифракционными картинами. Перед нами открывался целый новый мир возможностей со своими собственными правилами. Мир квазикристаллов.

Это название было выбрано нами, чтобы подчеркнуть принципиальное отличие этих материалов от обычных кристаллов. И те и другие состоят из групп атомов, которые повторяются по всему объему.

Группы атомов в кристаллах повторяются с регулярными интервалами, как в пяти рассмотренных выше схемах. В квазикристаллах, однако, разные группы повторяются с разными интервалами. Источником нашего вдохновения стал двумерный узор, известный как мозаика Пенроуза, представляющий собой необычное замощение из двух разных типов плиток, которые повторяются с двумя несоизмеримыми[4] интервалами. Математики называют такие замощения квазипериодическими. Поэтому мы назвали наше теоретическое открытие квазипериодическими кристаллами, или сокращенно квазикристаллами.

В небольшой демонстрации, с помощью которой я собирался доказать Фейнману свою правоту, использовались лазер и слайд с фотографией квазипериодического узора. По просьбе Фейнмана я включил лазер и направил луч так, чтобы, пройдя через слайд, он попадал на дальнюю стену. Лазерный свет произвел тот же эффект, что и рентгеновские лучи, проходящие по каналам между атомами: он породил дифракционную картину, подобную той, что представлена на фото ниже.

Я выключил свет в аудитории, чтобы Фейнман мог хорошенько разглядеть на стене характерный узор из точек, похожий на снежинку. Он был не похож ни на одну дифракционную картину из тех, что ему доводилось видеть прежде.