Невозможность второго рода. Невероятные поиски новой формы вещества — страница 5 из 54

Как и во время доклада, я указал ему на концентрические кольца, образованные самыми яркими пятнами – по десять штук в каждом. Это было неслыханно. Видны были также группы точек, образующие пятиугольники, соответствующие симметрии, которая считалась абсолютно запрещенной в природе. Приглядевшись, между этими точками можно было увидеть и другие, между которыми были еще точки, а между теми – еще.



Фейнман попросил слайд, чтобы рассмотреть его внимательнее. Я включил свет, вынул слайд из держателя и вручил ему. Изображение на слайде было настолько мелким, что рассмотреть детали было тяжело, поэтому я также дал ему увеличенный рисунок замощения, который он положил на стол перед лазером.

На несколько долгих секунд воцарилась тишина. Я вновь почувствовал себя студентом, ожидающим реакции Фейнмана на свою последнюю абсурдную идею. Рассмотрев увеличенное изображение на столе, он снова вставил слайд в держатель и сам включил лазер. Его взгляд метался между увеличенным отпечатком на столе и лазерным узором на стене.

“Невозможно!” – в конце концов сказал Фейнман. Я согласно кивнул и улыбнулся, принимая это как самый высокий из его комплиментов.

Он еще раз взглянул на стену и покачал головой: “Абсолютно невозможно! Одна из самых поразительных вещей, что я когда-либо видел”.

Не добавив больше ни слова, Дик Фейнман, буквально сияя от восторга, одарил меня широченной озорной улыбкой.

Глава 2Пазл Пенроуза

Филадельфия, штат Пенсильвания, октябрь 1981 года

За четыре года до этой моей встречи с Фейнманом никто еще не слыхал о квазикристаллах. Включая и меня.

Я тогда едва приступил к работе на физическом факультете Пенсильванского университета, и меня пригласили провести коллоквиум по физике – еженедельную общефакультетскую лекцию. В Пенн[5] меня взяли благодаря исследованиям, которыми я занимался в Гарварде. Они относились к физике элементарных частиц и были направлены на понимание фундаментальных составляющих материи и сил, посредством которых они взаимодействуют. Особенно всех заинтересовали мои самые свежие на тот момент наработки. Мы с моим первым аспирантом Энди Олбрехтом тогда работали не покладая рук над развитием инновационных концепций зарождения Вселенной, которые в конечном итоге помогли заложить основы того, что сегодня называется инфляционной моделью Вселенной.

Однако я решил рассказать не об этом, а выбрал для лекции проект, о моей работе над которым почти никому не было известно и значимость которого была еще неочевидна. Я не ожидал, что эта лекция произведет сильное впечатление на одного молодого аспиранта, сидевшего в аудитории, и что вскоре это приведет к плодотворному сотрудничеству и открытию новой формы вещества.

Бо́льшую часть времени я потратил на описание проекта, которым уже полтора года занимался с Дэвидом Нельсоном, физиком-теоретиком из Гарварда, и Марко Рончетти, постдоком, работавшим в Исследовательском центре IBM имени Томаса Дж. Уотсона в Йорктаун-Хайтс, штат Нью-Йорк.

Мы занимались изучением того, как меняют свой порядок атомы жидкости, когда та резко охлаждается и затвердевает. Ученым было хорошо известно, что при медленном замораживании атомы стремятся перейти из характерного для жидкости беспорядочного расположения в упорядоченную периодическую структуру кристалла (как при превращении воды в лед).

В простейшем случае, когда все атомы одинаковы и взаимодействуют посредством простых межатомных сил, в упорядоченном состоянии они складываются друг на друга, как апельсины на прилавке магазина. Эта структура, носящая в науке название гранецентрированной кубической решетки, обладает той же симметрией, что и куб, подчиняясь всем известным законам кристаллографии.

Мы же втроем пытались понять, что произойдет, если охладить жидкость так быстро, что она затвердеет прежде, чем атомы успеют выстроиться в идеальный кристалл. Из общенаучных соображений в то время предполагалось, что расположение атомов в этом случае будет напоминать стоп-кадр жидкого состояния. Другими словами, оно будет совершенно случайным, без какого-либо видимого порядка.

Дэвид Нельсон и один из его студентов, Джон Тонер, выдвинули более интересное предположение. Они считали, что быстрое затвердевание может породить смесь случайности и порядка. По их мнению, несмотря на хаотичность расположения атомов в пространстве, связи между ними могут в среднем выравняться вдоль ребер куба. Тогда расположение атомов окажется в некоем среднем состоянии между порядком и хаосом. Нельсон с Тонером назвали эту фазу “кубатической”.

Чтобы оценить научную значимость этой идеи, надо обладать некоторыми базовыми знаниями. Физические свойства вещества и возможные способы его использования очень сильно зависят от конфигурации его атомов и молекул. Рассмотрим, например, кристаллы графита и алмаза. Основываясь на их физических свойствах, трудно даже представить себе, что у них есть хоть что-то общее. Графит мягкий, скользкий и мутный с темно-металлическим отливом. Алмаз же исключительно твердый, прозрачный и блестящий. Однако оба они состоят из одного и того же типа атомов – из ста процентов углерода. Единственное различие между этими двумя материалами – в порядке расположения атомов углерода, как показано на рисунке ниже.

В алмазе каждый атом углерода соединен с четырьмя другими атомами в трехмерную сеть. В графите же каждый атом углерода связан только с тремя другими атомами в пределах двумерного листа. Эти углеродные слои как бы сложены в стопку один к другому, подобно листам бумаги.

Алмазная сеть крайне прочна, ее трудно разрушить. Напротив, листы углерода легко соскальзывают друг с друга, опять же как листы бумаги. Это и есть основная причина того, почему алмаз настолько тверже графита. И это различие самым непосредственным образом отражается на их практическом использовании. Алмаз, будучи одним из самых твердых известных материалов, используется в буровых головках. Графит же настолько мягок, что его используют в карандашах. Листы углерода отслаиваются при перемещении кончика карандаша по странице.



Этот пример демонстрирует, как знание о симметрии расположения атомов того или иного вещества позволяет понимать и предсказывать его свойства и находить для него наиболее эффективные способы применения. То же относится и к материалам, полученным при быстром охлаждении, которые ученые называют стеклянными, или аморфными. Они существенно отличаются от медленно охлажденных кристаллов по своим электрическим, тепловым, упругим и вибрационным свойствам. Медленно охлажденный кристаллический кремний, например, широко используется в электронной промышленности. А аморфный кремний, не такой твердый, как медленно охлажденный, предпочтителен для использования в некоторых типах солнечных батарей.

Вопрос, который мы с Нельсоном и Рончетти хотели исследовать, состоял в том, имеют ли некоторые твердые материалы, полученные быстрым охлаждением, определенную упорядоченность, которой прежде никто не замечал и которая могла бы дать дополнительные преимущества в прикладных задачах.

К тому моменту я уже несколько лет занимался разработкой способов моделирования быстрого охлаждения жидкостей. Меня приглашали на лето – сначала как аспиранта, а затем как постдока – работать над теоретическими компьютерными моделями в Йельском университете и в Исследовательском центре IBM имени Томаса Дж. Уотсона. Мои основные научные интересы в то время лежали в другой области. Однако я пользовался этими исследовательскими возможностями, поскольку был заинтригован тем фактом, что науке все еще было неизвестно расположение атомов в такой примитивной среде, как аморфное вещество. Тут я вполне сознательно следовал одному из самых важных уроков, полученных от моего наставника Ричарда Фейнмана: доверяй своему чутью и ищи достойные задачи, куда бы они тебя ни вели, даже если новое направление не будет совпадать с тем, в котором ты прежде предполагал двигаться.

Летом 1973-го, перед моим завершающим годом учебы в Калтехе, я разработал первую модель стекла и аморфного кремния для генерируемой компьютером непрерывной случайной сети (НСС-модель). Эта модель широко использовалась для предсказания структурных и электронных свойств этих веществ. В последующие годы работы с Рончетти я разработал и более сложные программы для моделирования процесса быстрого остывания и затвердевания.

В 1980 году случайный разговор в Гарварде с Дэвидом Нельсоном дал новую цель всем моим трудам по теме аморфных материалов. Мои компьютерные модели можно было адаптировать для проверки гипотезы Нельсона и Тонера о кубатическом веществе.

Дав своей аудитории в Пенне краткое введение в историю вопроса, я перешел к кульминации своей лекции. Если предположение о кубатической фазе верно, то атомные связи в моей новой компьютерной модели не должны оказаться расположенными случайным образом. В среднем они должны тяготеть к “кубической ориентации”, то есть стремиться к выравниванию вдоль ребер куба.

Мы разработали сложный математический тест для эксперимента, призванного проверить, демонстрирует ли усредненная ориентация связей ожидаемую кубическую симметрию, и вывели количественный параметр, характеризующий, насколько сильно проявляется это кубическое выравнивание.

Результат оказался… абсолютно провальным. Мы не нашли никаких признаков преимущественного выравнивания связей вдоль ребер куба, предсказанного Нельсоном и Тонером.

Однако совершенно случайно мы открыли нечто даже более интересное. Разрабатывая количественный математический тест для проверки ориентации атомных связей в соответствии с кубической симметрией, мы поняли, что будет несложно адаптировать этот тест к поиску любых других возможных вращательных симметрий. Поэтому вдобавок мы использовали тест для количественной оценки каждой симметрии по степени выравнивания атомных связей вдоль различных направлений.