Сравнивая конфигурации плиток, которые непосредственно окружают звездообразные кластеры, мы заметили, что не у всех звезд окружение совпадает. На следующем слое окружающих плиток мы обнаружили еще больше различий. Изучив рисунок на странице 58, вы сами можете их заметить. На самом деле ни у какой пары звезд не будет в точности одинакового окружения, если смотреть достаточно далеко от их центров.
Это было важно, поскольку, как мы с Довом знали, в периодических узорах такого не бывает. Каждая плитка в замощении квадратами всегда имеет в точности такое же окружение, как и любая другая, как бы далеко от центра построения мы ни заглядывали.
Этим простым наблюдением мы подтвердили, что узор Пенроуза не может быть периодическим. И все же узор, состоящий из кластеров, которые очень похожи между собой и часто повторяются в замощении, нельзя считать и случайным. Это привело нас к вопросу: что за узор может быть одновременно и не периодическим, и не случайным?
Готового ответа не было, и это меня по-настоящему заинтриговало. Никто не видел ничего подобного узору Пенроуза до того, как он придумал его в 1974 году. Даже сам Пенроуз, похоже, не в полной мере оценил значимость собственного открытия. В своей первой статье Пенроуз описывает узор как “непериодический”, четко показывая, чем его замощение не является. Но там нет ни слова о том, каким же оно на самом деле является. А для нас с Довом это было крайне принципиально.
Когда мы только начали изучать замощение Пенроуза, мы представляли себе, что сможем сконструировать аналогичный трехмерный узор, используя пару строительных блоков. Затем, заменив строительные блоки каждый формы определенным типом атомов или кластером атомов, мы надеялись построить атомную структуру, которая реализовала бы нашу мечту о новом типе вещества.
Однако прежде всего нам следовало убедиться в том, что новая атомная структура действительно является новой, и выделить ее особые физические свойства, а для этого требовалось определить ее симметрии. Просто описать новое вещество как непериодическое или неслучайное было недостаточно. Поэтому следующие несколько месяцев мы полностью посвятили замощению Пенроуза, чтобы понять, сможем ли мы открыть математический секрет его симметрий.
Первое удивительное свойство замощений Пенроуза, которое установили мы с Довом, состояло в том, что в них в слабой форме проявляется вращательная симметрия пятого порядка, которая, конечно, считалась невозможной.
Чтобы увидеть в замощении Пенроуза симметрию пятого порядка, требуется некоторое усилие. Вернемся к рисунку на странице 58 с замощением, составленным из широких серых и узких белых ромбических плиток. Уделите немного времени изучению плиток, которые непосредственно окружают любой из звездчатых кластеров. Их расположение представляется весьма сложным. Мысленно поверните его на одну пятую оборота, или на 72°. Совпадет ли конфигурация с той, что была вначале?
Если вы попробуете выполнить этот эксперимент, то обнаружите, что верным ответом будет “по-разному”. Для некоторых звезд ответ – твердое “нет”. Отбросьте их и выберите другие. Продолжайте, пока не найдете такой звездчатый кластер, для которого ответ будет “да”. Долго искать вам не придется.
Теперь рассмотрите второй слой плиток, окружающих выбранный вами звездчатый кластер. Повторите вращение на 72°, одну пятую часть полного оборота, и проверьте, выглядит ли эта конфигурация плиток, которая простирается теперь на два слоя от исходного звездчатого кластера, так же, как исходная.
И вновь для некоторых звезд ответом будет “нет”. Опять же проигнорируйте их и продолжайте поиск, пока не найдете один из тех более редких звездчатых кластеров, для которого ответом будет “да”. Теперь повторите этот процесс еще раз для этого подмножества, перейдя к трем слоям. И так далее.
Проверяя все больше и больше слоев, вы будете отбрасывать все больше и больше звездчатых кластеров, но обнаружите, что всегда остаются некоторые кластеры, сохраняющие симметрию пятого порядка. Эта процедура намного более трудоемкая, чем та, что требуется для проверки симметрии периодического замощения, но этого достаточно для доказательства того, что замощение Пенроуза обладает вращательной симметрией пятого порядка.
С использованием более сложных математических методов можно показать, что формально замощение Пенроуза обладает более чем пятым порядком симметрии. В действительности оно имеет симметрию десятого порядка. Но для нас с Довом разница между пятым и десятым порядком симметрии была неважна. В любом случае эта симметрия была строго запрещена математикой замощений и известными законами кристаллографии.
Отсюда вытекало лишь одно: в основании этих законов лежало ошибочное допущение, и на протяжении более чем двух столетий никто этого не замечал. Существовала некая лазейка. Едва осознав это, мы с Довом загорелись этой темой. Мы просто обязаны были найти эту лазейку.
Мы уже знали о правилах совмещения, загадочных замках, которые мешают плиткам складываться в какой-либо периодический узор. Правила совмещения означали, что плиткам дозволялось соединяться только в узоры с запрещенной симметрией пятого порядка.
С помощью моделей из шариков и проволоки мы с Довом уже начали конструировать аналогичную трехмерную структуру, состоящую из строительных блоков, каждый из которых представлял один или несколько атомов. Для нашей модели мы перевели замки Пенроуза в атомные связи, соединявшие атомы, предоставляемые одним из наших трехмерных строительных блоков, с атомами другого. Эти атомы естественным образом препятствовали бы затвердеванию в виде любого типа кристалла с регулярной периодической решеткой. Вместо этого атомы были бы вынуждены создавать искомый нами новый тип вещества с икосаэдрической симметрией.
Лично меня сильнее всего цепляла именно эта линия размышлений, поскольку я находился под большим влиянием воображаемого воннегутовского льда-девять, в котором новая компоновка молекул воды – лед-девять – была стабильнее обычного кристаллического льда. Новая форма вещества, за которой мы охотились, могла бы оказаться, если ее удастся найти, значительно более стабильным материалом, тверже обычных кристаллов. Но какого рода закономерность стояла за правилами совмещения?
Одна из подсказок состояла в том, что замощения Пенроуза подчиняются так называемому правилу дефляции. Каждый широкий и узкий ромб в замощении Пенроуза можно разделить на части меньшего размера, которые образуют другое замощение Пенроуза. На рисунке внизу исходное замощение показано жирными линиями. Способ разделения, или дефляции, каждой широкой и узкой плитки отмечен пунктиром. Как видно на рисунке, пунктирные линии соединяются и образуют новое замощение Пенроуза с бо́льшим количеством элементов.
Начав с небольшой группы плиток и повторяя процедуру дефляции, можно получить замощение Пенроуза с любым желаемым числом элементов. Обратный процесс, заменяющий группы плиток меньшего размера более крупными, называется правилом инфляции. Правила дефляции и инфляции доказали нам с Довом, что замощение Пенроуза обладает своего рода предсказуемой иерархической структурой.
Мы с Довом были убеждены, что сочетание симметрии пятого порядка, правил совмещения и правил дефляции-инфляции служит безошибочным свидетельством того, что пенроузовское размещение плиток является упорядоченным в новом, неинтуитивном смысле. Но каким именно порядком оно обладает?
Это не давало нам покоя. Мы с Довом знали, что если сумеем ответить на этот вопрос, то откроем путь в обход давно признанного закона, диктующего, какими типами симметрии может обладать вещество. А это может оказаться ключом к серьезному сдвигу парадигмы и открытию множества невиданных доселе материалов.
Но, ради всего святого, что же это за обходной путь? Мы оказались в тупике.
Глава 3Обнаружение лазейки
Важную подсказку, позволившую раскрыть секрет симметрии замощений Пенроуза, мы с Довом обнаружили в неопубликованной работе гениального математика-любителя по имени Роберт Амманн.
Он был необычным человеком, ведущим уединенный образ жизни. Способностей Амманна хватило для поступления в Университет Брандейса в середине 1960-х. Но отучился он только три года, в течение которых редко покидал свою комнату. В конце концов его отчислили, и он так никогда и не получил диплома.
В дальнейшем он самостоятельно освоил программирование компьютеров и нашел работу в области низкоуровневого программирования. К сожалению, он потерял место во время волны сокращений в компании. Тогда он стал сортировать корреспонденцию на почте, поскольку на этой работе не требовалось много общаться с людьми. Сослуживцы считали его предельно некоммуникабельным и замкнутым интровертом.
Вот только почтовые служащие наверняка не догадывались, что Амманн был настоящим математическим гением. В свободное от работы время он погружался в тот же мир развлекательной математики, что увлекал таких мэтров науки, как Роджер Пенроуз и Джон Конвей. С характерной скромностью Амманн описывал себя как “склонного к математике рисовальщика каракулей”.
Мы с Довом натолкнулись на идеи Амманна в двух коротких статьях в малоизвестных журналах, написанных Аланом Маккеем, кристаллографом и профессором материаловедения из Лондонского университета. Маккей разделял наше восхищение икосаэдром, замощениями Пенроуза и фантазиями о материалах с запрещенной симметрией пятого порядка. В этих двух статьях, напоминавших скорее спекулятивные эссе, нежели исследовательские работы, были изложены некоторые его важные соображения по этой теме. Они включали две иллюстрации, которые сразу вызвали у нас особый интерес.
На первой Маккей изобразил пару ромбоэдров – широкий и узкий, как показано на рисунке внизу. Нам с Довом эти трехмерные фигуры уже были хорошо знакомы. Это были очевидные трехмерные аналоги широких и узких ромбов, которые использовались для построения двумерных замощений Пенроуза. Так что, по-видимому, Маккей шел тем же путем, что и мы.