Пара наблюдений, сделанных во время проведения экспериментов с вышеописанными ап- паратами, могут оказаться достойными чести быть здесь упомянутыми. Как указывалось ранее, когда колебания в первичной и вторичной цепях синхронизованы, точки наибольшего потенци- ала расположены на части клеммы Т. При установленной полной синхронизации и при длине вторичной катушки равной одной четверти длины волны, эти точки, несомненно, окажутся на свободном конце клеммы Т, а это означает, что одна из них окажется дальше от конца прово- да, прикрепленного к клемме. Если это так, и если при этом сокращается период колебаний на первичной катушке, то точки наибольшего потенциала сместятся в направление вторичной ка- тушки, поскольку длина волны уменьшилась, а заземление одного конца вторичной катушки определяет положение узловых точек, которые являются точками с наименьшим потенциалом. Таким образом, изменяя период колебаний первичного контура любым способом, точки наи- большего потенциала можно перемещать вдоль клеммы Т, которые на рисунке для большей на- глядности намеренно расположены далеко друг от друга. Разумеется, такое же явление возникает, когда тело пациента соприкасается с клеммой, а ассистент может передвигая ручки i перемещать точки с наивысшим потенциалом вдоль тела пациента с необходимой скоростью.
Когда действие катушки сильное, место наивысшего потенциала определяется довольно легко по возникающим неприятным ощущениям или боли. Довольно любопытно ощущать, как боль перемещается вверх и вниз, вдоль тела, или с одной руки на другую подчиняясь движению ру- коятки управления колебаниями, если, конечно катушка надлежащим соответствующим обра- зом. Тем не менее, мне не приходилось наблюдать каких-либо специфических результатов во время проведения экспериментов подобного рода, но я всегда чувствовал, что этому эффекту можно найти ценное применение в области электротерапии.
Другое наблюдение, которое обещает принести куда более значительные результаты, состоит в следующем: как было отмечено выше и подкреплено результатами практических испытаний, таким способом тело человека без какого-либо ущерба для здоровья может быть подвергнуто глубокому и всестороннему воздействию электрическим током, напряжением до нескольких миллионов вольт, вырабатываемых обычным аппаратом. Если токопроводящее тело наэлектризовать до весьма значительной степени, то маленькие частички, которые могут быть накрепко приклеены к его поверхности, отлетают от нее в такой силой, о величине которой можно только догадываться. Я полагаю, что при этом отлетают не только крепко прилипающие материалы, как, например, краска, но и частички твердых металлов. Предполагалось, что такие операции можно производить только в вакуумной среде, однако при наличии достаточно мощной катушки добиться подобного результата можно было бы и в обычной атмосфере. Учитывая эти факты, можно надеяться, что данный эффект, которому я уже нашел полезное применение в других сферах, будет востребован и в области электротерапии. Постоянные модернизации инструментов и дальнейшее изучение данного явления могут вскоре привести к образованию нового направления в области гигиены, которое позволило бы производить мгновенное очищение кож и человека, просто подключая его к источнику мощных электромагнитных колебаний, или даже помещая его вблизи этого источника. В мгновение oкa от кожи отлетела бы пыль, или прилипшие частички любых других чужеродных веществ. Подобная процедура, введенная в повседневный обиход, несомненно, внесла бы неоценимый вклад в гигиену человека. Высоко эффективные и быстрые процедуры смогли бы заменить собой процесс мытья в ванной, что по достоинству оценили бы те, кто пытается взять на себя больше, чем может выполнить.
Высокочастотные импульсы порождают мощный индукционный эффект, и благодаря этой особенности им находят все новые и новые способы применения в электротерапии. Индукционный эффект бывает либо электростатический, либо электродинамический.
Электростатический эффект очень быстро — квадратично — падает с увеличением расстояния, тогда как электродинамический эффект падает пропорционально увеличению расстояния. С другой стороны, первый усиливается квадратично в зависимости от интенсивности источника колебаний, тогда как последний усиливается просто пропорционально усилению источника. Об а эти эффекта могут быть использованы для создания мощного поля, охватывающего значительное пространство, например, большой зал. Подобные установки могут использоваться в больницах или других медицинских учреждениях, где возникает необходимость проводить одновременное лечение множества пациентов.
Рис. 6 иллюстрирует мой первоначальный вариант установки такого электростатического поля. На данной схеме: G — генератор тока очень высокой частоты, С — конденсатор для погашения самоиндукции цепи, которая включает в себя первичный контур Р индукционной катушки, вторичный контур S, к клеммам которого подсоединены две пластины tt, имеющие большие контактные поверхности. Пр и соблюдении хорошо известных настроек возникаем очень сильное поле между пластинами, а тело человека подвергается воздействию быстрых изменений потенциала и импульсов перенапряжения тока, которые даже на большом расстоянии дают физиологический эффект. Во время моих первых экспериментов, как показано на рисунке, я использовал две металлические пластины, однако, позже я предпочел им две полые латунные сферы, покрытые воском, толщиной около двух дюймов. Кабели, идущие к клеммам вторичной катушки, были покрыты воском примерно так же. Таким образом, обеспечивалась возможность подхода к ним без риска получить травму от электрического удара, которому подвергался экспериментатор в случае использовании пластин.
На Рис. 7 изображена схема схожего использования динамического индукционного эффекта тока высокой частоты.
Поскольку частота тока, вырабатываемая альтернатором, не настолько высока, как требуется, приходится использовать конденсаторы. Нижеприводимое описание позволит легко понять эту схему. Следует только отметить, что первичный контур p, через который происходит разрядка конденсаторов, охватывает все помещение зала, и выполнен из толстого кабеля с низкой самоиндукцией и сопротивлением. Можно задействовать любое количество вторичных катушек s S S, каждая из которых содержала бы только один слой достаточно толстого провода. Вполне реально подключить около сотни таких катушек таким образом, чтобы каждая из них соответствовала бы определенному периоду и реагировала бы на строго определенные колебания, производимые первичной катушкой. Такую установку я использовал в своей лаборатории с 1892 года, и она неоднократно доставляла удовольствие моим гостям, и при практическом использовании показала себя с самой лучшей стороны. В последнем случае, я имел честь привлечь к участию в экспериментах нескольких членов Ассоциации. Пользуясь случаем, хочу выразить им глубокую благодарность за интерес, проявленный к моей работе, а также выразить признательность Ассоциации за проявленную любезность. С тех нор мой аппарат подвергся весьма значительным изменения в лучшую сторону, и в настоящее время в лаборатории я могу создать индукционное поле такой интенсивности, что катушка диаметром в три фута, при соблюдении соответствующих настроек, выделяет энергию мощностью около одной четверти лошадиной силы вне зависимости от того, в какой точке пространства, ограниченного первичными контурами, она находится. На протяжении последних лет я часто был вынужден демонстрировать эксперименты на публике, однако, при всем моем желании и далее откликаться на подобного рода предложения, необходимость продолжить интенсивную работу, вынуждает меня отвечать отказом. И это принесло свои плоды: медленное, но устойчивое улучшение деталей аппарата, которые, надеюсь, в ближайшем будущем я смогу описать во всех подробностях.
Однако могут возникать и довольно необычные электродинамические эффекты, которые, как я уже отмечал ранее, могут усиливаться при усилении поля в очень малом пространстве. Известно, и это также отмечалось ранее, что если поддерживать электродвижущую силу величиной в несколько тысяч вольт между двумя точками токопроводящего бруска или петли длиной всего лишь в несколько дюймов, то в проводниках, расположенных рядом с ними, возникает электродвижущая сила примерно той же величины. И действительно, я обнаружил, что вполне возможно передавать таким способом электрический разряд в лампе, внутри которой вакуум. Несмотря на то, что необходимая величина электродвижущей силы составляла от десяти до двадцати тысяч вольт, в течение долгого времени я проводил эксперименты в этом направлении с целью добиться получения света новым, более экономичным способом. Но результаты испытаний не оставили сомнений в том, что такой способ освещения требует огромных энергетических затрат. Имея в своем распоряжении только мой аппарат, я сосредоточил свои усилия именно в этом направлении: поиске другого метода передачи электрической энергии. Спустя некоторое время (в июне 1891 г.) профессор Дж. Томсон описал эксперименты, которые были очевидным итогом длительных исследований, и предоставил много новой и интересной информации. Это побудило меня вернуться к изысканиям в этой области и продолжить свои эксперименты. Вскоре все мои усилия были сконцентрированы на получении в малом пространстве индуктивного поля наибольшей интенсивности. Постепенно внося усовершенствования в аппарат, я добился удивительных результатов. Например, если конец тяжелого железного бруска поместить в контур, находящийся под высоким напряжением, то в течение несколько секунд брусок нагревается до высокой температуры. Даже тяжелые куски других металлов нагревались так быстро, как будто их помещали в печь. Когда поместили в контур свернутый в трубочку кусок оловянной пластины, то металл полностью оплавился. Это было сравнимо со вспышкой и не удивительно, что фрикционные потери, сконцентрированные в нем, возможно, достигали величины в десять лошадиных сил. Подобным же образом вели себя и многие другие токопроводящие материалы. А когда в контур поместили стеклянный сосуд, из которого был откачан воздух, то за несколько секунд стекло нагрелось почти до точки плавления.