При токах таких высоких частот можно получить бесшумные дуги, но настройка лампы становится крайне сложной из-за чрезвычайно слабых притяжений или отталкиваний между проводниками, переносящими эти токи.
Интересной особенностью дуги, полученной таким быстро переменяющимся током, является ее продолжительность. Этому есть две причины, одна из которых наличествует всегда, а другая лишь иногда. Одна обусловлена свойством тока, другая — свойством машины. Первая причина более важна, и вызвана быстротой переключений. Когда дуга формируется периодическим волнообразным током, возникает соответствующая волнообразность в температуре столба газа, и, следовательно, соответствующая волнообразность в сопротивлении дуги. Но сопротивление дуги чрезвычайно сильно меняется с температурой газового столба, становясь практически бесконечным, когда газ между электродами холодный. Продолжительность дуги, таким образом, зависит от неспособности столба охлаждаться. По этой причине невозможно поддерживать дуги при токе, переключающемся лишь несколько раз в секунду. С другой стороны, при практически постоянном токе дуга поддерживается легко, потому что постоянно поддерживаются высокая температура и низкое сопротивление столба. Чем выше частота, тем меньше интервал времени, в течение которого дуга может остыть и заметно увеличить свое сопротивление. При частоте 10,000 в секунду или более в дуге того же размера на постоянную температуру накладываются небольшие вариации температуры, как рябь на поверхности глубокого моря. Эффект нагрева практически непрерывен, и дуга ведет себя как дуга, создаваемая постоянным током, за исключением того, что она может не так легко устанавливаться, и что электроды расходуются дугой одинаково; хотя в этом отношении автор наблюдал некоторые нерегулярности.
Вторая упомянутая причина, которая может и отсутствовать, обуславливается тенденцией машины столь высокой частоты поддерживать практически постоянный ток. Когда дуга удлиняется, электродвижущая сила растет пропорционально, и дуга становится более продолжительной.
Подобные машины словно специально предназначены для того, чтобы поддерживать постоянный ток, но совсем не подходят для постоянного напряжения. На самом деле, в определенной категории таких машин почти постоянный ток является практически неизбежным результатом. Когда сильно увеличивается число полюсов или полярных выступов, становится очень важным зазор. На самом деле, экспериментатору приходится иметь дело с огромным числом очень маленьких машин. Потом, есть сопротивление в якоре, которое высокая частота увеличивает чрезвычайно. Потом, опять же, облегчается магнитное рассеяние. Если чередующихся полюсов три или четыре сотни, рассеяние столь велико, что это практически то же самое, что в двух-полюсной машине соединить полюса куском железа. Правда, этого недостатка можно более или менее избежать, если использовать везде поле одной полярности, но тогда сталкиваешься с трудностями иной природы. Все эти явления стремятся поддерживать в цепи якоря постоянный ток.
В этой связи интересно отметить, что даже сегодняшние инженеры изумляются работе машины постоянного тока, так же, как несколько лет назад они считали удивительной способность машины поддерживать постоянную разность потенциала между контактами. Хотя одного результата так же легко добиться, как и другого. Надо только помнить, что в индукционном приборе любого вида, если нужен постоянный потенциал, индуктивное отношение между первичной, или возбуждающей, цепью и вторичной цепью, или якорем, должно быть как можно ближе. Тогда как в приборе для постоянного тока нужно как раз противоположное. Более того, противодействие течению тока в индуцируемой цепи должно быть как можно меньше в первом случае и как можно больше во втором. Но противодействие течению тока может вызываться более чем одним способом. Его можно вызвать омическим сопротивлением или самоиндукцией. Можно сделать индуцируемую цепь динамо машины или трансформатора с таким большим сопротивлением, что что в работе с приборами гораздо меньшего сопротивления в очень широких пределах будет поддерживаться почти постоянный ток. Но это большое сопротивление приводит к огромной потере в мощности, и поэтому непрактично. С самоиндукцией дело обстоит по-другому. Самоиндукция не обязательно означает потерю мощности. Мораль такова: вместо сопротивления используйте самоиндукцию. Кроме того, есть обстоятельство, которое способствует принятию такого плана действий, и состоит оно в том, что очень высокую самоиндукцию можно получить дешево, окружив сравнительно небольшую длину провода более или менее полностью железом, и, более того, эффект можно усиливать, вызывая быструю волнообразность тока. Чтобы все это просуммировать, для постоянного тока требования такие: Слабая магнитная связь между индуцируемой и индуцирующей цепями, насколько возможно высокая самоиндукция при наименьшем сопротивлении, наибольшая возможная частота перемен тока. Для постоянного потенциала, напротив, требуются: Как можно более близкую магнитную связь между цепями, равномерный индуцируемый ток, и, если возможно, никакой реакции. Если в машине постоянного потенциала последние условия получается выполнить полностью, ее выход будет многократно превосходить выход машины, изначально предназначенной для того, чтобы давать постоянный ток. К несчастью, тот вид машин, в которых эти условия можно соблюсти, имеет очень мало практической ценности из-за маленькой получаемой электродвижущей силы и сложностей в съеме тока.
С их обостренным инстинктом изобретателей нынешние электро-дуговики быстро распознали, чего не хватает машине постоянного тока. Их машины дугового света имеют слабые поля, большие якоря с огромной длиной медного провода и небольшим числом сегментов коммутатора, чтобы давать сильные изменения в силе тока и ввести в игру самоиндукцию. Подобные машины могут поддерживать практически постоянный ток в больших пределах вариации сопротивления цепи. Их выход, конечно, уменьшается соответственно, но, наверное именно имея в виду не слишком уж сильно этот выход уменьшать, и используется простой прибор для компенсации избыточных вариаций. Волнообразность тока — едва ли не самое важное для коммерческого успеха системы электродугового света. Она вводит в цепь стабилизирующий элемент вместо большого омического сопротивления, не приводя к большим потерям мощности, и, что еще более важно, она позволяет использовать простые зажимные (clutch) лампы, которые при токе с определенным, наилучшим для каждой конкретной лампы, количеством импульсов в секунду, будут, если за ними правильно следить, регулироваться даже лучше, чем самые хорошие точные (clock-work) лампы. Это открытие было сделано автором — с опозданием на несколько лет.
Знающие Английские электротехники утверждали, что в машине постоянного тока или трансформаторе на регулировку влияет изменение фазы вторичной цепи. Можно легко показать ошибочность этой точки зрения, если вместо ламп использовать устройства, каждое из которых обладает самоиндукцией и емкостью, или самоиндукцией и сопротивлением, — то есть замедляющей и ускоряющей компонентами, — в таких пропорциях, чтобы не влиять существенно на фазу вторичного тока. Любое количество таких устройств можно вставить в цепь или убрать из нее, и все равно окажется, что регулировка есть, постоянный ток поддерживается, а электродвижущая сила с числом устройств меняется. Изменение фазы вторичного тока — это просто результат, следующий из изменений в сопротивлении, и, хотя вторичная реакция всегда более или менее важна, тем не менее реальная причина регулировки лежит в наличии вышеперечисленных условий. Следует, однако, указать, что в случае машины данные выше замечания должны ограничиваться случаями, когда машина возбуждается независимо. Если возбуждение выполняется посредством коммутации тока якоря, то фиксированное положение щеток делает любое смещение нейтральной линии чрезвычайно важным, и не следует считать нескромным со стороны автора отметить, что насколько позволяют записи, представляется, что он был первым, кто успешно отрегулировал машины, обеспечив шунтирующее соединение между точкой внешней цепи и коммутатором посредством третьей щетки. Когда якорь и поле надлежащим образом спропорционированны, и щетки размещены в определенных для них положениях, постоянный ток или постоянный потенциал получается в результате сдвига диаметра коммутации через изменение нагрузок.
В связи с машинами таких высоких частот конденсатор позволяет провести очень интересное исследование. Легко увеличить электродвижущую силу такой машины в четыре или! пять раз по величине просто подключив к цепи конденсатор, и автор постоянно использовал
такой конденсатор для регулировки, как предлагает Блэксли в своей книге по переменным токам, в которой он с изысканной простотой и легкостью рассмотрел наиболее часто возникающие проблемы с конденсатором. Высокая частота позволяет использовать малые емкости и делает исследование несложным. Тем не менее, хотя результат большинства экспериментов легко можно предсказать, некоторые явления сначала кажутся удивительными. Примером может послужить один эксперимент, проведенный три или четыре месяца назад с такой машиной и конденсатором. Использовавшаяся машина давала около 20,000 перемен в секунду. Два оголенных провода примерно двадцати футов длиной и двух миллиметров в диаметре, расположенные вблизи друг друга, были одним концом подключены к контактам машины, а другим — к конденсатору. Использовался небольшой трансформатор, конечно, без железного сердечника, чтобы привести показания в диапазон вольтметра Кардью, который подключался ко вторичной обмотке. На контактах конденсатора электродвижущая сила была примерно 120 вольт, откуда дюйм за дюймом постепенно снижалась до 65 вольт на контактах машины. Это было практически так же, как если бы конденсатор был генератором, а провод и цепь якоря — просто подключенным к нему сопротивлением. Автор искал случай резонанса, но не смог увеличить эффект ни посредством аккуратного и постепенного варьирования емкости, ни посредством изменения скорости машины. Случая полного резонанса достичь не; удалось. Когда конденсатор был подключен к контактам машины — при этом сначала была определена самоиндукция якоря в максимальном и минимальном положении и взято среднее! значение, — емкость, которая давала наибольшую электродвижущую силу, ближе всего соответствовала той, которая просто противодействовала самоиндукции при данной частоте. Если емкость увеличивалась или уменьшалась, электродвижущая сила как и ожидалось, падала.