НЛО и современная наука — страница 26 из 36

мерно 500 км и соответственно 170 км при запуске на высоту 1500 км.

Ракеты-носители, применяемые для запусков космических аппаратов. Эти конструкции принято подразделять на несколько классов. Легкий, к которому относятся ракеты-носители типа «Космос» (СССР), американские ракеты «Скаут», «Тор», английские «Блэк Эрроу». Средний класс представляют советские ракеты-носители типа «Восток», «Союз», американские «Титан», «Атлас», ракета-носитель стран европейского сообщества «Ариан», модификации которой, правда, можно отнести и к следующему классу тяжелых ракет. Отечественную технику в нем представляет ракета-носитель «Протон». К сверхтяжелому классу относятся такие мощные системы, как «Сатурн-5», использовавшаяся для выполнения программы «Аполлон» (США) и с тех пор не применявшаяся, корабль многоразового использования «Спейс Шаттл» и созданная в 1987 г. в СССР ракета-носитель «Энергия».

Технические характеристики этих ракет-носителей, далеко не полностью перечисленных выше, содержатся в специальной литературе, ниже будут приведены для примера лишь некоторые из них.

Ракеты, предназначенные для военных целей. Подробные технические данные ракет, предназначенных для военных целей, в широкой печати не публикуются. Заметим, однако, что эффекты воздействия ракетного двигателя на окружающую среду не зависят от того, на какой по назначению ракете он установлен и какой стране принадлежит эта ракета. Поэтому явления, развивающиеся при испытаниях военной ракетной техники, не отличаются от явлений, сопровождающих запуски научно-исследовательских ракет.

В качестве примеров рассмотрим приблизительные схемы запусков двух ракет-носителей, применяемых для вывода на орбиту искусственных спутников Земли.

Советская трехступенчатая ракета-носитель «Союз». Иногда эта ракета используется с четвертой ступенью — так называемый разгонный блок — для вывода спутников типа «Молния» с опорной орбиты на высокоэллиптическую.

После выработки компонент топлива первой ступени, что происходит на высоте около 50 км в конце второй минуты полета, блоки первой ступени отделяются, а двигатель второй ступени, т. е. центрального блока, продолжает работать. Общее время работы этого агрегата составляет примерно 5 мин, после чего происходит отсечка тяги двигателя и отделение третьей ступени и головной части. В зависимости от орбиты, на которую выводится спутник, это отделение может происходить на разных высотах, как правило, больших 150 км.

В момент отделения второй ступени включается двигательная установка третьей ступени. Время работы двигателя третьей ступени около 220 с. Скорости, которые приобретает ракета в конце работы двигателей первой, второй и третьей ступеней, составляют соответственно примерно 3, 7 и 8 км/с. Общее время полета ракеты на активном участке траектории около 9 мин, при этом удаление от места старта обычно превышает тысячу километров. Очевидно, что эффекты, связанные с запуском ракеты, точнее, с работой двигательной установки, могут наблюдаться на достаточно большой территории, а не только в непосредственной близости от космодрома.

Все двигатели этой ракеты-носителя, кроме нескольких, имеющих вспомогательное значение, работают на жидком топливе.

Заметим, что ракетные двигатели можно классифицировать по различным признакам: по виду источника энергии — пневматические, химические, электрические, ядерные; по исходному агрегатному состоянию рабочего тела — газовые, жидкостные, твердотопливные. В настоящее время наибольшее применение получили жидкостные ракетные двигатели (ЖРД) и ракетные двигатели на твердом топливе (РДТТ), которые по мощности и напряженности работы значительно превосходят все другие тепловые двигатели. Достаточно указать, что давление в камере сгорания современных ракетных двигателей может достигать 25 МПа, т. е. 250 атм, а температура составляет до 4000 °C, при этом скорость реактивной струи доходит до 4000 м/с. Весьма разнообразны ракетные двигатели также по размерам и величине тяги. Так, микродвигатели, применяемые в системах ориентации космических аппаратов, развивают тягу в доли ньютона и имеют размеры всего несколько сантиметров. Мощные же твердотопливные двигатели, используемые в качестве стартовых ускорителей тяжелых ракет-носителей, имеют тягу в несколько меганьютон, а их размеры составляют несколько десятков метров.

Условия, необходимые для оптимального функционирования двигателя, могут частично варьироваться скоростью подачи горючего и окислителя. Естественно, что вначале, когда процесс горения еще не установился, сгорание может происходить не полностью и наряду с газообразными продуктами сгорания в выхлопной струе могут присутствовать относительно крупные — микронные и субмикронные — частицы. Выброс негазообразных продуктов происходит также при включении двигателей и сливе неиспользованных компонент топлива после отделения отработавших ступеней носителя.

Твердотопливные ракетные двигатели по сравнению с жидкостными обладают как рядом преимуществ, так и некоторыми недостатками. К их достоинствам в первую очередь относятся высокая степень надежности и относительная простота устройства, что обусловливает их широкое применение в военной технике, системах спасения на космических кораблях, в реактивных системах управления, в качестве стартовых блоков ракет-носителей и других комплексах. К недостаткам РДТТ можно отнести сложности управления тягой этих двигателей и меньшую удельную тягу по сравнению с ЖРД.

Основным параметром, характеризующим скорость и устойчивость горения твердых топлив, является давление в камере сгорания, служащей одновременно и местом хранения топлива. Поскольку устойчивое равномерное горение происходит лишь при достаточно высоком давлении, составляющем обычно несколько десятков атмосфер, то для выключения — отсечки тяги двигателя — необходимо уменьшить давление в камере сгорания. Наиболее отработанный в настоящее время способ состоит в практически мгновенном открытии с помощью пиротехнических устройств дополнительных отверстий в корпусе с большой суммарной площадью. При этом продукты сгорания истекают не только через сопло в одном направлении, но также и через эти отверстия, формируя выхлопную струю сложной формы. Давление резко падает, и горение остатков топлива прекращается.

Естественно, что как и в ЖРД, на переходных режимах работы РДТТ, когда давление и температура в камере сгорания отличаются от расчетных, процесс горения происходит не оптимальным образом и в состав продуктов сгорания в выхлопной струе входят вместе с газовой фазой и мелкодисперсные частицы.

Несмотря на ограниченное использование РДТТ в космической технике, существуют несколько конструкций ракет-носителей для запусков ИСЗ, все ступени которых оснащены такими двигателями. В частности, к ним относится четырехступенчатая американская ракета-носитель «Скаут» («Scout»).

Двигатель первой ступени этой ракеты работает около 1 мин, второй ступени — 35 с, третьей — 25 с, четвертой — 28 с.

Секундный расход топлива при работе двигателей различных ступеней составляет около 200, 120, 45 и 10 кг/с, а общее время полета на активном участке траектории занимает около 2,5 мин. Очевидно, что запуск этой ракеты-носителя происходит со значительно большими ускорениями, чем ракеты-носителя «Союз». Параметры активного участка траектории, т. е. его протяженность, крутизна, также имеют свои особенности, определяемые не только параметрами орбиты спутника, но и техническими возможностями ракеты.

Приведенные характеристики помогут понять ряд специфических оптических эффектов, иногда сопровождающих запуски ракетной техники. Но вначале остановимся на возможных простых явлениях, наблюдаемых при полетах такой техники.

Во-первых, следует заметить, что ракета-носитель — это, как правило, достаточно крупная конструкция и с расстояния в несколько десятков километров просто может быть видна невооруженным глазом. При этом близость космодрома, звуковые эффекты, сопровождающие работу двигателя, яркий факел выхлопной струи не оставляют шансов спутать наблюдаемую картину запуска с каким-либо другим событием даже самому наивному очевидцу.

Во-вторых, последние ступени ракеты-носителя, как и другие космические объекты, могут наблюдаться в сумерках в результате отражения света Солнца. Чем крупнее конструкция, тем больше ее блеск; например, орбитальная станция может выглядеть значительно ярче Венеры. В тех случаях, когда космический аппарат вращается при движении по орбите, его блеск периодически меняется, так как изменяется площадь отражающей поверхности. С Земли это выглядит как полет спутника, систематически «мигающего». Более того, из-за особенностей зрения иногда кажется, что спутник летит не по плавной траектории, а как бы совершает рыскающие движения. При некотором опыте наблюдений за ночным небом эти явления все-таки не вызывают существенных трудностей в распознавании у большинства очевидцев.

Третье, на чем следует остановить внимание, — видимость факела работающего двигателя. Он представляет собой поток продуктов сгорания, вылетающих из сопла со скоростью, достигающей иногда 4 км/с. Для большинства же типичных конструкций эта скорость имеет значение около 3 км/с. Хорошо известно, что удельная тяга ракетного двигателя тем выше, чем больше скорость истечения продуктов сгорания, и следовательно, температура в камере сгорания и в выхлопной струе. Поэтому конструкторы двигателей добиваются получения наиболее горячего факела. Как уже отмечалось, в современных двигателях температура продуктов сгорания может составлять более 3000 °C. Имея столь высокую температуру, факел, естественно, является источником интенсивного излучения в широком диапазоне длин волн, от ультрафиолетового до инфракрасного излучения, в том числе и в видимой области. Так как при разлете продуктов сгорания происходит их резкое расширение, то температура факела очень быстро падает с удалением от сопла и наиболее интенсивно излучающая часть факела не слишком велика.

Оценить силу света такого источника можно, полагая, что внутренние части факела, а также, конечно, сами срезы сопла двигателя излучают как черное тело, имеющее соответствующую температуру. Эффективная поверхность такого «черного тела» может составлять несколько десятков квадратных метров. Для оценок возьмем значение S