или дискретным, бесконечно или конечно, делимым, даже если в Г эти вопросы не обсуждаются. Т. о., формализация состоит не просто в том, чтобы осуществить запись Г в некотором символическом языке, но в том, чтобы выявить и отобразить при этом логику, которой будут удовлетворять высказывания с теми терминами, которые фигурируют в Т. Решение такой проблемы является профессиональной задачей логики вообще и может исследоваться независимо от тех или иных конкретно взятых содержательных теорий и задач, связанных с их формализацией. Так, напр., в логике формализуются теории алетических, эпистемических, деонтических, временных и другие модальностей, полные относительно некоторых содержательных семантик. Вопрос о возможности формализации теории Г есть поэтому не только вопрос о готовности к этой процедуре со стороны Г, но и о том, в достаточной ли степени разработан для этой цели имеющийся логический и математический аппарат. В связи с пунктом (3) надо иметь в виду, что ФТв явном виде содержит всю необходимую для формализации теории Гло- гику и математику и соответствующий им класс правил или содержательно интерпретируемых теорем, напр., закон кон- трапозиции импликации: (А-^В)->(-*В-+-*А) и т. п., которым фактически нет соответствия в Т. Кроме того, Г обычно не детерминирует всех логических взаимоотношений высказываний, содержащих используемую в Г терминологию. Поэтому ФТ практически всегда задает ту или иную экспликацию этой терминологии. Если даже отвлечься от возможности использования в Ф Т различных базовых логик и математик, то уже только оправданные содержанием алогические различия в экспликациях терминологии позволяют построить для одной и той же содержательной теории Г множество альтернативных формализации. При этом теория Г в зависимости от того, какая конкретная формализация будет сочтена адекватной, будет в той или иной степени менять свой смысл. Дело логика указать, чем отличаются возможные альтернативы, но не в его компетенции считать какую-то из них более предпочтительной, не говоря уже более верной. Чтобы иметь возможность содержательного обсуждения теории ФГ, в частности, говорить о ее непротиворечивости, полноте, доказуемости или недоказуемости в ней теорем определенного рода, используется т. н. метаязык (в отличие от языка, на котором сформулирована Ф7), и все верные утверждения такого рода относят к метатеории МФТ Проблему формализации содержательной теории Тъ ФГмож- но считать решенной, если в рамках метатеории А/ФГудает- ся показать, что каждому истинному в принятой интерпретации предложению Т соответствует доказуемое утверждение ФТ(теорема полноты), и наоборот (теорема адекватности). В силу разных причин такого положения не всегда удается добиться. Об этом говорит, в частности, известная теорема К. Геделя (1931) о неполноте непротиворечивой формализованной арифметики. Дело в том, что некоторая формализуемая теория Г может содержать столь богатый выразительными возможностями язык, что в ее рамках могут строится утверждения о формализующей ее системе ФГи, значит, отображаться в последней. Происходит т. н. замыкание языка и метаязыка. Любая непротиворечивая формализация теории Т оказывается принципиально неполной, так как любое изменение ФТ порождает класс новых содержательно истинных в МФТ и в самой Г предложений. Именно такого рода теорией доказывается содержательная арифметика. В объектном языке формализующей эту арифметику теории ФТ можно строить утверждения о самой этой теории, которые при содержательной интерпретации становятся истинными предложениями теории Т. В ФТ воспроизводится, в частности, некоторая форма парадокса лжеца (см. Парадокс логический), т. к. всегда находится формула, утверждающая свою собственную недоказуемость в ФТ Такая формула содержательно истинна именно потому, что в ФТ недоказуема. Ее истинность в Г и при этом недоказуемость в ФГговорит о неполноте последней. Теорема Геделя не исключает возможности полной формализации более узких фрагментов математики. Теореме Геделя о неполноте не следует придавать преувеличенного, во всяком случае универсального философского значения и распространять ее следствия на теории, при формализации которых принципиально отсутствуют и не могут возникнуть рассмотренные выше причины, препятствующие полной формализации всех истинных предложений содержательной математики. Лит.: Клини С. К. Введение в метаматематику. М., 1957. Е. А. Сидоренко ФОРМАЛИЗМ — одно из четырех главных направлений в основаниях математики наряду с эффективизмом, интуиционизмом и логицизмом. Основоположником формализма является Д. Гильберт, который поставил триединую задачу в об-
267
ФОРМАЛИЗМ ласти обоснования математики, известную под названием программы Гильберта: 1. Признать, что значительная часть математических абстрактных объектов (см. Абстрактный объект) — это идеальные конструкции, не имеющие точной интерпретации во внешнем мире и вводимые прежде всего как интеллектуальные орудия для работы с реальными объектами. Более того, не все математические высказывания о реальных объектах могут считаться реальными. Назначение идеальных объектов и высказываний — перебросить мост от одних реальных высказываний к другим. 2. Точно и до конца формализовать допустимые методы работы с идеальными конструкциями, с тем, чтобы исключить здесь обращения к интуиции и апелляции к содержательному смыслу. Т. о., математика должна быть превращена в исчисление. 3. Создать метаматематику, которая должна иметь дело с частным случаем реальных объектов — математическими формализмами, и строго обосновать при помощи как можно более простых, интуитивно ясных и не вызывающих сомнения у конструктивистов методов (финитных методов) принципиальную возможность устранения идеальных объектов и высказываний из доказательств реальных утверждений. Математическую теорию, развитую для потребностей метаматематики, Д. Гильберт назвал доказательств теорией. В качестве метода такого обоснования предполагалось доказать непротиворечивость, а по возможности и полноту, математических формализмов. По мере развития теории доказательств и теории моделей формализм все больше сближался с логицизмом, и сейчас многие авторы сводят их в единое металогическое направление. Однако имеется принципиальное методологическое отличие формализма от логицизма и от наивного платонизма. Для формалиста абстрактные объекты и понятия — не более чем орудия, позволяющие получать реальные истины и конструкции; он не ставит вопрос об их существовании или происхождении, это не относится к задачам формализма. Воспользовавшись достижениями логицизма, в частности трудом А. Уайтхеда и Б. Рассела, школа Гильберта уже в 20-е гг. точно сформулировала формальное исчисление для арифметики и стимулировала работы по формальной аксиоматизации множеств теории. Интенсивно велись исследования в направлении непротиворечивости и полноты построенного арифметического исчисления. Действуя под сильнейшим влиянием формализма, А. Тарский и Р. Карнап определили понятие истины и вместе с Л. Витгенштейном сформулировали важнейшие понятия верифицируемости и фальсифицируемо- ести (см. Фальсификация), связывающие идеальные высказывания с реальными. Философская суть их состоит в том, что любое утверждение должно допускать прямую либо косвенную процедуру подтверждения или опровержения. Утверждения, которые не могут быть проверены даже косвенно, — псевдопроблемы. Парадоксальным образом одним из первых теоретических конструктов, проверенных при помощи формалистских методов, явилась сама программа Гильберта. Теорема Геделя о неполноте показала, что цель-максимум ее недостижима, а его же (Геделя) теорема о недоказуемости непротиворечивости — что фальсифицируется и предложенное Гильбертом средство. Т. о., программа Гильберта не сводится к псевдопроблемам и являлась реальной программой научного исследования. Как известно, чаще всего приводят к важным результатам теоретические программы с недостижимыми, но реально проверяемыми целями. Несмотря на защиту Л. Брауэром, который в других случаях резко критиковал его, но соглашался с целями программы Гильберта, научная общественность восприняла результаты Геделя как крах программы Гильберта. Пожалуй, самым слабым местом программы Гильберта была ее общая установка на обоснование и спасение существующей математики, которая возникла как результат реакции Гильберта на пересказ ему идей Брауэра и на некоторые личные дискуссии с ним (сам Гильберт работ Брауэра не читал). В данном месте первоначальный формализм соединялся с таким математическим платонизмом, который представлял собой вульгаризированную версию абстрактных математических объектов по типу «абсолютных идей» Платона. Поэтому математические платонисты восприняли формализм как молитву, произнесение которой позволит им освятить свою деятельность и в дальнейшем ничего не менять. Именно эта установка оказалась подорвана теоремами Геделя, показавшими, что перестраивать математику все равно придется и что в ней всегда есть место сомнению. Тем не менее дальнейшее развитие подтвердило скорее точку зрения Брауэра, чем большинства. Теория доказательств стала приносить позитивные результаты. В 1936 Г. Генцен опубликовал доказательство непротиворечивости арифметики, в котором единственным неформализуемым в арифметике шагом была трансфинитная индукция до Eq, которая, безусловно, косвенно верифицируема и фальсифицируема содержательными полностью финитными методами и конструктивно приемлема. Еще раньше, в 1934, он опубликовал доказательство теоремы нормализации, из которого следовала возможность устранения промежуточных идеальных высказываний из логических выводов реальных высказываний. В 1939 П. С. Новиков установил, что из классического арифметического доказательства существования объекта, удовлетворяющего разрешимому условию, следует возможность построить такой объект. Тем самым реальные утверждения, доказуемые в арифметике, оказались обоснованными. В дальнейшем были получены оценки роста длины вывода