процессах, а также выражения какого-либо языка. При этом выражение языка служит, как правило, именем неконструктивного объекта. Последнее наблюдение естественно приводит к понятию нумерации, служащему математическим выражением общей идеи соответствия между именами (в математической терминологии — «номерами») и их денотатами в рамках какой-либо системы имен (в математической терминологии — «нумерации»); основы теории нумераций были сформулированы Колмогоровым в 1954. Интерес к конструктивным процессам привел его к алгоритмической проблематике. В частности, в 60-х гг. он предложил новые, алгоритмические подходы к обоснованию теории вероятностей, что позволило в конечном счете дать строгое определение понятию случайности для индивидуального объекта (что недоступно традиционной теории вероятностей). В кибернетике Колмогоров проанализировал роль дискретного (в противопоставлении непрерывному) и отстаивал принципиальную возможность возникновения у машин мышления, эмоций, целенаправленной деятельности и способности конструировать еще более сложные машины. В информатике в 50-х гг. он предложил общее определение понятия алгоритма, а в 60-х гг., опираясь на алгоритмические представления, создал теорию сложности конструктивных объектов. Эта теория в свою очередь была применена им для построения нового обоснования теории информации. Выдающуюся роль в логике играют две статьи Колмогорова: «О принципе tertium non datur» (Математический сборник, 1925, т. 32, № 4, с. 668—677) и «Zur Deutung der intuitionist- ischen Logik» (Mathematische Zeitschrift, 1932, Bd. 35, S. 58 - 65); обе перепечатаны в его кн. «Избранные труды. Математика и механика» (вторая — в рус. пер.: «К толкованию интуиционистской логики»). Обе объединены общей идеей — навести мост между интуиционистской логикой и традиционной, или «классической», логикой, причем сделать это средствами, свободными как от идеологии интуиционизма, так и от крайностей теоретико-множественного догматизма. В статье 1925 предлагается такая интерпретация «классической логики, которая приемлема с точки зрения интуиционизма; напротив, в статье 1932 предлагается такая интерпретация интуиционистской логики, которая приемлема с классических позиций. В статье «О принципе...» ученый принимает предпринятую главой интуиционизма Брауэром критику традиционной логики, при этом обнаруживая в последней еще один уязвимый, но обойденный критикой Брауэра логический принцип, а именно принцип, выражаемый аксиомой А —> (-* А—>В). Как указывает Колмогоров, эта аксиома «не имеет и не может иметь интуитивных оснований как утверждающая нечто о последствиях невозможного». Он выдвигает два вопроса: 1) почему незаконное, с интуиционистской точки зрения, применение исключенного третьего принципа часто остается незамеченным? 2) почему оно не привело до сих пор к противоречию? На оба вопроса в статье даются ответы. На 1-й вопрос — потому что применения закона исключенного третьего оправданы, коль скоро возникающее в результате таких применений суждение носит финитный характер; действительно, в этом случае оно может быть доказано и без использования указанного закона (это открытие опровергло точку зрения Брауэра о том, что при получении финитных результатов должны быть запрещены нефинитные умозаключения). На 2-й вопрос — потому что если бы противоречие было получено при использовании закона исключенного третьего, то оно могло бы быть получено и без него; здесь впервые в истории логики произошло (предвосхитившее последующие работы Геделя 30-х гг.) доказательство относительной непротиворечивости формальной аксиоматической системы, т. е. такое доказательство непротиворечивости, которое использует презумпцию о непротиворечивости другой системы. Колмогоров точно очертил круг тех суждений, для которых составленные из них тавтологии классической логики высказываний являются интуиционистски обоснованными: это суть те и только те суждения, для которых выполняется двойного отрицания закон. В этой же статье Колмогоров впервые предложил позитивный анализ обоснованности с точки зрения интуиционизма, традиционной, или. «классической», математики. Одновременно он впервые сделал интуиционистскую логику объектом строгого математического анализа. В статье была предложена первая система аксиом для этой логики, ныне известная как минимальное исчисление для отрицания и импликации. В 1-м разделе статьи «Zur Deutung...» («К толкованию...») Колмогоров наполняет формулы интуиционистской пропозициональной логики новым содержанием, свободным от философских предпосылок интуиционизма. Он предлагает рассматривать каждую такую формулу не как утверждение, а как проблему (т. е. как требование указать или построить объект, подчиненный тем или иным заранее заданным условиям). Понятие проблемы, или задачи, есть одно из фундаментальных понятий логики; Колмогоров был первым, кто включил это понятие в логико-математический дискурс, предвосхитив т. н. семантику реализуемости (Клини—Нельсона). Предложенная Колмогоровым интерпретация интуиционистской логики близ-
273
колот ка к концепции Гешпинга, однако у последнего отсутствует четкое различение между суждением и проблемой. Существенным этапом в становлении логического мышления явилось предложенное Колмогоровым уточнение представления о сводимости одной проблемы к другой. Сам Колмогоров впоследствии так определял цель статьи: «Работа писалась в надежде на то, что логика решения задач сделается со временем постоянным разделом курса логики. Предполагалось создание единого логического аппарата, имеющего дело с объектами двух типов — высказываниями и задачами». Во 2-м разделе статьи выдвигается и обосновывается следующий взгляд: с интуиционистской точки зрения нельзя, вообще говоря, рассматривать отрицание общего суждения в качестве содержательного суждения. «Но тогда, — указывает Колмогоров, — исчезает предмет интуиционистской логики, поскольку теперь принцип исключенного третьего оказывается справедливым для всех суждений, для которых отрицание вообще имеет смысл. Возникает, однако, новый вопрос: какие логические законы справедливы для суждений, отрицание которых не имеет смысла?» Соч.: Основные понятия теории вероятностей. М., 1974; Введение в математическую логику. М, 1982 (соавтор Драгалин А. Г.); Математическая логика: Дополнительные главы. M., 19S4 (соавтор Драгалин А. Г.); Избр. труды. Математика и механика. М., 1985; Теория вероятностей и математическая статистика. М., 1986; Теория информации и теория алгоритмов. М., 1987; Математика — наука и профессия. М., 1988; Математика в ее историческом развитии. М., 1991; Новгородское землевладение XV века. М., 1994; Современные споры о природе математики. — «Научное слово», 1929, № 6; Современная математика. — Сб. статей по философии математики. М., 1936; Предисловие. — В кн.: Гейтинг А. Обзор исследований по основаниям математики. М., 1936; Предисловие редактора перевода. — В кн.: Петер Р. Рекурсивные функции. М., 1954; Предисловие. — В кн.: Эшби У Р Введение в кибернетику. М., 1958; Жизнь и мышление как особые формы существования материи. — В кн.: О сущности жизни. М., 1965; Письма А. Н. Колмогорова к А. Рейтингу. — «Успехи математических наук», 1988, т. 43, вып. 6; Семиотические послания. — «Новое литературное обозрение», 1997, № 24. Лит.: Успенский В. А. Наш великий современник Колмогоров. — В кн.: Колмогоров А. Математика в ее историческом развитии. М., 1991; Колмогоров в воспоминаниях. М., 1993; Uspensky V. A. Kolmogorov and mathematical logic. — «The Journal of Symbolic Logic», 1992, vol. 57. N 2, P. 385-412; YoushckevitchA. P. A. N. Kolmogorov: Historian and Philosopher of Mathematics. - «Historia mathematical, 1983, vol. 10, N4, R 383-395. В. А. Успенский
КОЛОТ(КсоЫщс) из Лампсака (род. ок. 325 до н. э.) — греческий философ, ученик и последователь Эпикура, учитель Менедема-кшта. Принадлежал, наряду с Идоменеем, Леонтеем и Фемистой к лампсакской школе эпикурейцев (основана во время пребывания Эпикура в Лампсаке, т. е. в 310 — 307). Сохранились фрагменты писем Эпикура к Колоту, которого он ласково называл «Колотарион» или «Колотар». Колот — автор полемических сочинений «Против «Лисия» Платона», «Против «Евтидема» Платона» (небольшие фрагменты сохранились в папирусной библиотеке из Геркуланума), «Против мифа у Платона», «О том, что невозможно жить, если следовать учению других философов». В последнем, наиболее известном сочинении Колот, рассматривая вопрос о критерии истины, подверг критике сомнения философов по поводу достоверности ощущений. Начав с Демокрита, который занимал особое место в эпикурейской критике скептицизма, Колот обратился (соблюдая хронологию) к рассмотрению учений Парменида, Эмпедокла, Сократа, Мелисса, Платона, Стильпона и, в заключение, — к двум современным школам: киренаикам и Новой Академии Аркесилая (при этом он каждый раз задавал риторический вопрос «как можно жить, если...»). Он считал, что те, кто отрицает истинность чувственных восприятий, не могут с уверенностью сказать о самих себе, живы они или мертвы. Сочинение было адресовано египетскому правителю Птолемею, и Колот представлял в нем философский скептицизм как форму философской анархии, враждебную законопослушанию, обеспечиваемому царской властью. Известны два сочинения Плутарха из Херонеи, посвященные критике Колота: «Против Колота» и «О том, что, следуя Эпикуру, невозможно жить счастливо» (Plutarchi Moralia VI, ed. M. Polenz - R. Westman. Lpz., 1959). Ист.: Cronert W. Kolotes und Menedemos. Texte und Untersuchungen zur Philosophen- und Literaturgeschichte. Lpz., 1906. Лит.: Westman R. Plutarch gegen Kolotes. Seine Schrift «Adversus Colotem» als eine philosophie-geschichtliche Quelle. Helsinki, 1955; DeLacyP. H. Colotes first Criticism of Democritus. — «isonomia», 1964, p. 67—77; ManciniA. С. Sulle opere polemiche di Colote. — «Cronache Ercolanesi», 1976,6, p. 61—67; Arrighetii G. Un passo dell'opera «Sulla nature» di Epicuro, Democrito e Colote. — «Cronache Ercolanesi», 1979, 9, p. 8—10; Маркс К. Эпикурейская философия. Тетрадь