Новые источники энергии — страница 38 из 56

Рис. 190. Управляющие сигналы в схеме Бердена

Управляющие катушки должны создавать поле, уменьшающее поле постоянного магнита. Необходимо проверить правильность подключения выводов катушек, чтобы при наличии тока в них создавалось поле, встречное полю постоянного магнита.

Величина магнитного поля, создаваемого постоянным магнитом, должна быть менее уровня насыщения сердечника, иначе, управление потоком невозможно.

Мощность, рассеиваемая в катушках управления, а также в схеме управления, может быть минимизирована при правильном режиме работы. В патенте US 6,362,718 указано, что в «данном аппарате путь магнитного потока постоянного магнита переключается способом, который не требует преодоления мощности магнитных полей. Управляющие цепи используют небольшую мощность для того, чтобы создать процесс самоинициируемого переключения пути магнитного потока постоянного магнита».

Такой самоиницируемый режим достигается за счет попеременного включения управляющих катушек и минимального тока в них, которого должно быть достаточно для создания колебательных процессов в доменах ферромагнетика, но управляющее поле не должно быть настолько большим, чтобы суммарное магнитное поле изменило направление. Другими словами, управляющие катушки создают поле в «узкой области» сердечника, без больших затрат мощности, но таким образом, что, во всей ветви магнитопровода, значительно изменяется магнитное сопротивление, поэтому магнитный поток постоянного магнита выбирает одно из направлений, в котором магнитное сопротивление меньше.

Рекомендуемый материал сердечника для создания такого режима работы – аморфные ферросплавы (нанокристаллин).

Длительность управляющего импульса должна быть достаточно большая, чтобы успеть создать изменение суммарного магнитного поля, но, как указано в патенте US 6,362,718 излишняя «длительность включения тока в управляющей катушке» создает ненужные потери энергии. Максимальная рабочая частота любого ферромагнитного материала известна по его техническим данным, но эти данные обычно приведены для синусоидального режима работы. Для определения работоспособности конкретного сердечника в изучаемой схеме трансформатора на заданной частоте (при заданной длительности управляющего импульса) необходимо исследовать его быстродействие с помощью датчика Холла. Домены сердечника имеют определенную инерциальность и изменение их ориентации требует некоторого времени, поэтому потребуется цикл исследований для каждого материала сердечника. С учетом всех этих важных аспектов, рекомендуется начинать работу с низкочастотными сигналами, а затем, повышать рабочую частоту до проявления инерциальности сердечника.

Рекомендации по обмотке катушек: для частот порядка 100КГц катушки могут иметь десятки витков, например в патенте US 6,362,718 управляющие катушки имеют 40 витков каждая и обмотки выхода – по 126 витков. При этом, на входе подается 100V ток 0.12 А, и на выходе получается 106V при токе 0.5A. Определение резонансного числа витков, в данной конструкции, критически важно.

В патенте US 6,362,718 Берден предложил варианты конструкции, показанные на рис. 191, хотя принципы управления потоком остаются общими.

Рис. 191. Варианты конструкции МЭГ

Аналогичное решение, кроме магнитных моторов, предлагает компания Steorn, проекты которой мы ранее рассмотрели. Их стационарный генератор включает в себя тороидальную катушку, через которую проходит магнитный поток постоянного магнита. При подаче управляющего сигнала, сердечник переходит в насыщение, что заставляет магнитный поток изменить путь прохождения через генераторную обмотку.

Интересный проект группы болгарских исследователей, показан на сайте www.teosfera.narod.ru/indexbgmeg.html. Их решение имеет особенность в организации обходного магнитопровода постоянного магнита, рис. 192 и рис. 1 93. Без обходного пути распространения магнитного потока, управление требует значительно больших расходов мощности. При наличии двух вариантов распространения, магнитный поток легко переключается, при создании соответствующего управляющего сигнала. В болгарском МЭГ, управляющие катушки расположены в центральной части сердечника, рядом с магнитом. Сечение обходного магнитопровода меньше сечения основного, поэтому, при отсутствии тока в управляющих катушках, магнитный поток постоянного магнита, в основном, замыкается через основной магнитопровод, проходя область генераторных катушек.

Рис. 192. Болгарский МЭГ

При появлении тока в управляющих катушках, создается магнитное насыщение в центральной части магнитопровода, что заставляет магнитный поток замыкаться через обходной путь. Интересная особенность: рабочая частота в данной конструкции составляет 10–20 Герц. Эта низкая частота импульсов объяснима, так как после переключения магнитного потока, материал железного сердечника достаточно медленно размагничивается. Само изменение намагниченности, при переключении направления магнитного потока, происходит скачком, а размагничивание – плавно. Этот плавный релаксационный период размагничивания материала сердечника необходим для индукционного эффекта, он и создает электродвижущую силу в генераторной катушке. Если этот фактор не учитывать, то можно получить в МЭГ скачки резкой смены направления магнитного поля, но индукционного эффекта, и мощности, в цепи нагрузки не будет. Изобретатели в Болгарии принимают заказы на изготовление автономных генераторов, но нам пока не известны положительные отзывы от их клиентов-покупателей. Серийного производства еще не создано. Рис. 193. Фото одной из болгарских конструкций

Рассмотрим другие фото и схемы. Большинство авторов не получили ожидаемый эффект, поскольку не решили задачу снижения затрат в цепи управления. Важную роль играет материал сердечника в том месте магнитопровода, где находятся катушки управления. Этот материал должен легко входить в насыщение при минимальных затратах мощности.

Еще раз напомню, что сама идея управления мощным магнитным потоком при помощи слабого управляющего сигнала, был известна еще с начала XX века, а «магнитный транзистор» заново изобрели в конце 1940-х. Режимы работы этих устройств очень тщательно подбираются, но в процессе работы устройство не требует регулировки при изменении нагрузки, а также оно недорогое по себестоимости. На рис. 194 показана изготовленная мной конструкция генератора МЭГ. Магнит на данном фото не виден, поскольку он расположен в центральной части кольца, между двумя Ш-образными сердечниками. Катушка на ферритовом кольце является управляющей, а более мощная генераторная катушка намотана на U-образном сердечнике. Настройка схемы начинается с ручного включения тока в катушку управления, при этом сила притяжения U-образного сердечника к Ш-образному сердечнику должна заметно меняться. Целесообразно поставить два U-образных сердечника симметрично.

Рис. 194. МЭГ Фролова

Схема работает хорошо, но на низких частотах. В данном случае, я не получил планируемого автономного режима.

На рис. 195 показан более сложный принцип переключения потоков, хотя данная конструкция МЭГ неизвестного автора удобна для исследований тем, что использует стандартные Ш-образные трансформаторные сердечники.

Рис. 195. Вариант схемы МЭГ

Рассмотрим еще один проект генератора энергии, который вошел в историю под названием «вакуумный триодный усилитель Флойда Свита» (Floyd Sweet VTA – vacuum triode amplifier). Проект имеет настолько фантастические детали, что я прошу читателя воспринимать его описание конструктивно, но осторожно.

Автор изобретения Флойд Свит закончил Массачусетский Технологический Институт в 1969 году, защитился по теме «динамика магнитных доменов». В 1990 году он демонстрировал свое изобретение, названное «вакуумным триодным усилителем». Подготовленные специальным образом бариевые магниты, использовались им в «триггерном режиме», то есть, резко меняли направление намагниченности при воздействии на них. Бистабильное состояние вещества магнита обеспечивало возможность перехода от одного направления поля к другому, при подаче на управляющую обмотку слабого сигнала от внешнего генератора. Причем, если материал «подготавливался» путем многократного перемагничивания на частоте 60 Герц, то затем, при работе, его управляющий сигнал должен иметь ту же частоту. Принцип управления мощным потоком за счет слабого сигнала используется в триодах, поэтому устройство и получило название «вакуумный триодный усилитель». В общем-то, принцип похож на работу МЭГ и всех «магнитных транзисторов».

Часть выходной мощности устройства Флойда была замкнута в петлю обратной связи для возбуждения процесса, в результате которого в выходной катушке появлялась значительная мощность.

Прототипы генераторов Флойда, построенные им в 1990–1995 генерировали мощность до 50 кВт. Флойд отмечал сильный антигравитационный эффект, измерив однажды уменьшение веса системы в работающем режиме до 90 % от ее нормального веса.

Рабочий материал (магниты) сильно охлаждались в процессе генерации мощности (антиэнтропийный процесс). Предполагается, что источником энергии является интенсивное некогерентное энергетическое излучение, которое существует везде во Вселенной. Это весьма существенное уточнение: именно некогерентное излучение.

В результате сложения множества некогерентных сигналов не создается процесс определенной мощности, так как «процесс» предполагает упорядочение. Технически, вопрос применения свободной энергии пространства для совершения работы и создания мощности в нагрузке можно сформулировать, как преобразование некогерентного, и поэтому скрытого от наблюдения, излучения, существующего в любой точке пространства, в когерентное, то есть в направленный поток эфира. Аналогичным образом работают вихревые преобразователи кинетической энергии молекул воздуха, то есть концентраторы тепловой рассеянной энергии среды, которые мы рассмотрим позже. В магнитном генераторе Флойда Свита, эффект охлаждения был эквивалентом преобразованной тепловой энергии эфира, а не воздуха. Вторично, происходило изменение температуры материала магнита. Постоянные магниты и катушки ВТУ охлаждались во время работы, показывая разницу температур в 20 градусов по сравнению с температурой окружающей среды.