Новые источники энергии — страница 50 из 56

Несколько слов по теории процесса. Начнем с того, что вычислим тепловую энергию рекомбинации одной молекулы. Из работ Ленгмюра и Вуда, известно, что реакция рекомбинации дает 435 КилоДжоулей тепла на грам-молекулу. Зная число Авогадро, можно найти количество тепла, выделяемое при рекомбинации одной молекулы водорода, равное, примерно, 10 в минус 18 степени Джоуля.

Тепловая диссоциация водорода требует сообщить молекуле такое же количество энергии, иначе она не диссоциирует. Нить накала катода, в наших экспериментах, нагревалась до 500 – 2400 градусов Кельвина. Найдем энергию тепловых колебаний (кинетическую энергию) атомов вольфрама нити накаливания, имеющей такую температуру. В данном диапазоне температур, она равна примерно 10 в минус 20 степени Джоуля, то есть в 100 раз меньше, чем необходимый уровень энергии диссоциации. Только для 7000 градусов Кельвина (температура фантастически высокая), мы получаем энергию на уровне 10 в минус 19 степени Джоуля, но все равно, это примерно в 10 раз меньше, чем уровень энергии, необходимый для начала диссоциации молекулы водорода. Странная ситуация…

Эти расчеты заставили меня задуматься о природе передачи кинетической энергии от атомов горячей вольфрамовой спирали молекулам водорода. Было сделано допущение о наличии в эксперименте некоторой доли паров вольфрама, которые всегда образуются в таких случаях, так как водород при заполнении колбы имел некоторую примесь паров воды (точка росы применяемого в данной лампе водорода была около минус 60 градусов Цельсия). Данный анализ физической ситуации, в которой участвуют пары вольфрама и молекулы водорода, при учете измерений тепловыделения в режиме импульсного нагрева катода, привел к открытию эффекта, суть которого заключается в следующем:

Во-первых, отметим, что массы молекул вольфрама и водорода значительно отличаются. В этом случае, мы можем указать на особые условия упругого столкновения двух тел различной массы (открытие Профессора Е. В. Александрова № 13 Приоритет СССР от 30 октября 1957 года). В соответствии с этим открытием, тело маленькой массы получает избыточную энергию в результате упругого столкновения с телом большой массы. Упрощенно, эксперимент Александрова состоял в том, что стальной шарик, сбрасываемый с некоторой высоты на массивную стальную плиту, отскакивал, и поднимался против силы тяжести на высоту, большую, чем его начальная высота. Позже выяснилось, что причиной явления служит потенциальная энергия в виде упругих сжатий, которые возникли при изготовлении шарика. Они высвобождаются при нескольких первых соударениях, но постепенно эффект уменьшается до нуля. Тем не менее, этот эксперимент дал импульс к развитию следующей концепции.

Из двух фундаментальных законов (сохранения энергии и сохранения импульса) будем полагать первичным закон сохранения импульса. При упругом столкновении, передача импульса от тела большой массы телу малой массы происходит таким образом, что после взаимодействия скорость тела с малой массой будет намного больше скорости тела с большой массой. Для пары тел «водород – вольфрам», разница масс составляет 74 раза. С учетом этого эффекта, скорость молекулы водорода после столкновения с «горячей» молекулой вольфрама, колебания которой соответствуют температуре 1500 градусов Кельвина, может достигать 52 км/с (теоретический максимум). На такой скорости, кинетическая энергия молекулы водорода может достигать 10 в минус 18 степени Джоуля, что намного больше той энергии, которая необходима для диссоциации молекулы водорода на атомы. Важно учесть, что кинетическая энергия имеет квадратичную зависимость от величины скорости движения (или колебаний) молекулы. Поэтому, преобразование кинетической энергии может быть несимметричным.

Итак, был получен вывод: физическая система двух взаимодействующих молекул очень эффективна в случае большой разницы их масс, так как происходит асимметричное увеличение кинетической энергии более легких молекул при упругом столкновении с более тяжелыми молекулами. Осциллирующие тяжелые атомы паров вольфрама (или вольфрама в нити накала) обеспечивают огромную скорость легким молекулам водорода после столкновения. Эта кинетическая энергия обуславливает диссоциацию водорода и выделение тепла при последующей рекомбинации. Таким образом, затратив 1000 Ватт электроэнергии на накал, можно ожидать получить более 7000 Ватт тепла. Другие варианты преобразования энергии, при столкновении молекул разной массы, и других «экономных» методах их возбуждения, могут дать еще большую эффективность.

В плане развития проекта, Кристофер Бремнер (Christopher Bremner) предложил использовать в экспериментах по данной теме смесь газов криптона и водорода. Возможны различные варианты смеси газов. Например, всем известна высокая эффективность ксеноновых ламп. В связи с тем, что молекула ксенона состоит из 11 атомов, а каждый имеет вес, равный весу 54 атомов водорода, предлагается использовать в будущих экспериментах смесь ксенона и водорода. В данном случае, разница массы молекулы ксенона и молекулы водорода составляет 297 раз, что обеспечит условия эффективной диссоциации водорода. Возбуждение молекул ксенона можно производить импульсным электрическим разрядом или облучением светом на резонансной длине волны. Рекомбинацию атомарного водорода, в данной схеме, целесообразно проводить в отдельном реакторе с катализатором (вольфрамовое напыление) и теплообменником. Приглашаются партнеры для развития и коммерциализации данного метода получения избыточной тепловой энергии.

Аналогичная ситуация складывается для случая паров ртути и водорода, а также других вариантов. Интересно, что «ртутно-водородный» метод уже применялся ранее для эффективного получения атомарного водорода, например, он описан в работе «Свойства свободных атомов водорода», К.Ф. Бонгефер, Берлин, «Ergebnisse tier exakten Naturwissenschaften», Выпуск № 6, 1927 год. Возбуждение смеси газов ртути и водорода, как пишет Бонгефер, должно производиться светом внешней ртутной лампы с длинной волны 254 нм. Этот свет возбуждает колебания тяжелых атомов ртути в другой колбе, где в смеси газов возникают соударения молекул ртути с молекулами водорода. Схема показана на рис. 223.

Рис. 223. Схема Бонгефера по получению атомарного водорода

Теперь мы понимаем, что именно благодаря разнице масс соударяющихся молекул, молекулы водорода, которые в 40 раз легче молекул паров ртути, приобретают огромную скорость после столкновения, и диссоциируют на атомы. Отметим, что данный метод применялся давно, но без объяснения эффекта. Рассмотрение причин появления «избыточной» энергии требует анализа инерциальных свойств массы, то есть явления инерции. Объяснение этого явления связано с концепцией эфира, так как движение молекулы с большой скоростью происходит не в пустом месте, а в окружающем ее эфире. Начинаются «чудеса природы» с момента упругого столкновения молекул, а фактически, с эфиродинамического обмена двух областей пространства-времени, одно из которых мы воспринимаем как «тяжелую молекулу», а второе, как «легкую молекулу». Это две разных физических системы, и в них даже время идет с разной скоростью, что и воспринимается нами, как закон сохранения импульса при их столкновении. После такого взаимодействия, можно предположить наличие эффекта «изменения температуры эфира», эквивалентного той избыточной тепловой энергии, которую мы забираем из реактора. Косвенно, это может проявляться как некоторые темпоральные и гравитационные эффекты, перспективные для создания космических движителей нового поколения. Парадокс «столкновения двух тел разной массы» ранее рассматривался другими исследователями, но в нашем проекте 2003 года, впервые был сделан расчет условий для молекулярного уровня, а также, теория была применена для практических целей. При этом, предполагалось, что столкновение молекул является абсолютно упругим, что очевидно при электромагнитных (эфирных) явлениях. Стальной шарик, в эксперименте Александрова, при повторениях соударений, постепенно терял упругость, и эффект пропадал. Молекулы и атомы такими недостатками, как известно, не обладают, поэтому предлагаемые циклы диссоциации-рекомбинации молекул являются перспективным направлением развития автономных теплогенераторов замкнутого цикла, не расходующих водород.

Глава 16 Автотермия воздуха

В этой главе мы рассмотрим «условно-бесплатную» технологию, о которой задумывался еще Тесла. Речь идет о сжигании азота, находящегося в воздухе, другими словами, об автотермии воздуха. Автотермия воздуха – явление горения воздуха, в частности, в модернизированном автомобильном двигателе, подробно изучал Евгений Иванович Андреев. В 2000 году опубликована его книга «Естественная энергетика». Эксперименты группы авторов показали возможность работы карбюраторного двигателя с минимальным расходом топлива, при определенной обработке воздушнотопливной смеси двигателя. Согласно теории Андреева, горение воздуха начинается при минимальном количестве углеводородов, выполняющих роль катализатора, и основано на лавинной реакции взаимодействия свободных электронов с атомами кислорода.

Известный пример, который следует знать для обеспечения техники безопасности: взрыв кислородных баллонов может произойти при наличии масла на поверхности баллона, так как кислород «бурно реагирует» при взаимодействии с маслом. Химическую реакцию горения или взрыва чистого кислорода можно представить, как диссоциацию молекулы кислорода на атомы и электроны, а затем рекомбинацию кислородных атомов в молекулу с выделением энергии. Для этого достаточно небольшого количества углеводорода (масла), который играет роль катализатора. Мы уже рассмотрели аналогичный молекулярный цикл для водорода. Именно такой подход, при небольшом количестве углеводорода, играющего роль катализатора, рассматривал Андреев.

Андреев провел измерения состава выхлопных газов двигателя, работающего при уменьшенном расходе топлива. Результаты дают основания полагать, что в