Итак, хрональная разность потенциалов может быть названа «хрональным напряжением». Хрональному градиенту соответствует определенная напряженность хронального поля, которая создается в том случае, если электрический потенциал является функцией времени. В таком случае, изменение плотности энергии в одной точке пространства, движущейся во времени, тоже создает работу, поэтому хрональное поле, находящееся в одной точке пространства, может быть использовано как источник мощности для полезной нагрузки, и как способ создания движущей силы. Работа, совершаемая в полезной нагрузке, зависит от хронального напряжения, и определяется, как производная по времени, причем, это работа имеет смысл перемещения материальной частицы вдоль оси времени.
Технические системы по извлечению мощности, в данном случае, должны включать «элемент памяти» для того, чтобы делать сравнение между прошлым значением потенциала и будущим значением. Примером такого «устройства памяти» является обычный электрический конденсатор, используемый в схеме однопроводной линии, показанной на рис. 125. Рассмотрим данную схему.
Рис. 125. Однопроводная линия электропередач
Источник изменяющегося потенциала соединен с проводом, имеющим резонансную длину. При четвертьволновом резонансе, изменение потенциала в точке включения диодов является максимальным. Отметим, что Никола Тесла использовал в аналогичной схеме специальную построечную катушку, чтобы получить требуемое резонансное состояние цепи в его однопроводной линии электропередач.
Метод получения асимметрии процесса по времени, в данной схеме, основан на применении пары диодов, соединенных выводами разной полярности, и подключенные общей точкой к однопроводной линии, в месте максимального изменения потенциала. Данное техническое решение называется «вилкой Авраменко».
Позволю высказать свое понимание работы данной схемы. Диоды создают однонаправленное смещение электронов в проводе, при каждом изменении знака потенциала. В том полупериоде, когда потенциал в точке подключения диодов положительный, он поляризует конденсатор через диод, включенный соответствующим выводом к общей точке (положительным). Во время следующего полупериода (отрицательного), поляризация конденсатора происходит через другой диод. Речь идет именно о токах смещения и поляризации, так как здесь нет замкнутой цепи генератора. Конденсатор в данной схеме заряжается посредством изменений потенциала, что никак не отражается на состоянии «первичного источника». Можно сказать, что генератор здесь является только источником информации. Замкнутая цепь образуется после конденсатора, обеспечивая электродвижущую силу, токи проводимости и мощность в нагрузке. С механической точки зрения, схема рис. 125 похожа на работу храповика: с каждым «шагом» создается один импульс тока в цепи конденсатора, но ток всегда циркулирует в одном направлении.
Итак, здесь нет замкнутой цепи на выходе источника, и нет градиента (разности потенциалов) между двумя точками в пространстве. Здесь мы можем рассматривать только градиент потенциала по времени, так называемую «хрональную разность электрических потенциалов», создаваемую в одной точке электрической схемы, в общей точке включения диодов.
Частота и амплитуда изменений потенциала в данной точке задают величину мощности на выходе. Кроме того, существенным фактором увеличения мощности в нагрузке является число свободных электронов в проводе, поскольку именно они создают силу тока проводимости в цепи нагрузки. По аналогии с обычной электродвижущей силой ЭДС, которая обеспечивается любым источником разности потенциалов в пространстве, введем понятие хронодвижущей силы (ХДС). Поле действия данной силы расположено не в пространстве, а во времени. В таком случае, можно предположить, что электрическая мощность в полезной нагрузке, создаваемая показанным выше методом, рис. 125, должна соответствовать определенным изменениям хрональных параметров, которые должны наблюдаться в окрестностях данного работающего преобразователя энергии.
Результатом действия ХДС на частицы материи, как и на все процессы, находящиеся вблизи данного генератора электроэнергии, является их хрональное ускорение или замедление, происходящее относительно натурального хода времени околоземного пространства.
Природа вещества, его процесс существования, демонстрирует нам однонаправленное естественное движение из прошлого в будущее. Можно сказать, что на все наблюдаемое нами вещество действует постоянная ХДС, которая в любой точке пространства есть результат однонаправленного изменения величины хронального потенциала по времени. Это изменение является глобальным, поскольку эффект (так называемый естественный поток времени) обнаруживается во всех точках нашего пространства – времени. Отсюда следует вывод: у всех частиц материи в нашем мире, с постоянной скоростью изменяется какой-то «интенсиал», величина, характеризующая активность поведения материи. Таким общим для всей материи «интенсиалом», может быть только плотность эфира. Мы уже отмечали, что глобальным процессом изменения плотности эфира в околоземном пространстве является процесс движения планеты и нашей звезды в расширяющемся рукаве Галактики Млечный Путь. Плотность эфирной среды в центре Галактики максимальна, и уменьшается при удалении от него на периферию Галактики. Следовательно, универсальным методом создания управляемой ХДС могут служить технологии изменения объемной плотности энергии в пространстве. Примеры таких технологий мы уже рассматривали, и продолжим их анализ в следующей главе о термогравитации, т. к. изменения температуры вещества является наиболее понятным способом изменения его «интенсиала», его внутренней энергии.Глава 28 Термогравитация
Итак, температура вещества характеризует энергетическое состояние частиц вещества, их «интенсиал» – хрональную активность поведения. При достижении определенного значения, вещество меняет фазовое состояние, например, испаряется или кристаллизуется. При этом, как показали эксперименты Козырева, Вейника и других исследователей, создается волна плотности эфира, как я полагаю, в результате высвобождения или поглощения части эфира, которая соответствует межмолекулярным связям в веществе. В экспериментах с высокотемпературными сверхпроводниками, которые мы ранее рассмотрели, было показано, что можно создать не только однократные, но и высокочастотные фазовые переходы, генерирующие волны эфира любой частоты.
В данной главе мы рассмотрим понятие о термогравитации, которое не связано с фазовыми переходами. Здесь в роли источника вибраций эфирной среды выступают атомы и молекулы, вне зависимости от фазового состояния вещества. При рассмотрении данного вопроса, мы будем полагать, что фазовое состояние вещества, при изменении его температуры, не меняется. Например, если рабочее тело выбрано твердое, то оно таким остается, при любой рассматриваемой температуре.
Итак, любые колебания атомов кристаллической решетки вещества создают вибрации эфирной среды. При нагреве тела, тепловые колебания усиливаются и, соответственно, увеличиваются вибрации эфирной среды вокруг горячего тела.
Горячие тела, как известно, излучают фотоны в инфракрасном диапазоне спектра частот электромагнитного излучения. Энергия волн, на данной частоте, очень большая, но они не оказывают заметного силового воздействия на окружающие объекты, поскольку не являются когерентными. Это означает, что каждая частица вещества вибрирует вне зависимости от вибраций других частиц. Результат таких колебаний статистически усредняется, создавая тепловой поток, например, инфракрасные фотоны.
Направление обычного потока тепла, например, шара, идет от центра тела изотропно во все стороны. Холодные тела, напротив, притягивают частицы эфира окружающей среды, создавая обратный эффект. В обоих случаях, используя обычные источники тепла или холода, становится возможным создавать направленные потоки эфирной среды и движущую силу. В ряде проектов, такие движители называют фотонными, хотя более корректно говорить о создании направленного потока продольных волн эфирной среды, который выполняет ту же роль, какую играет поток реактивной массы ракеты.
В интересной книге А.П. Щеголева «Спираль познания» [71] был предложен мысленный эксперимент по созданию термогравитационного движителя. Суть эксперимента состоит в следующем: шар, изготовленный из высокотемпературного материала, разогревается внешним источником до такой степени, что его тепловое излучение позволяет ему преодолеть свой вес, и парить в воздухе. На таком принципе, вполне возможно создать космические аппараты.
Реальные эксперименты Щеголева подтверждают его концепцию, так как он уверенно детектирует изменение веса любых нагретых тел, даже простого утюга. Вне зависимости от формы тела, тепловое излучение способно частично компенсировать потоки эфира, которые обуславливают силы притяжения данного тела к центру планеты. Однако, нельзя назвать этот подход оптимальным методом. Целесообразно создавать анизотропный тепловой поток, и ориентировать его в нужном направлении. В связи с этим, необходимо сделать некоторые замечания по постановке эксперимента Щеголева. На рис. 126 показано сечение шара, в котором сделана конусная выемка. Нагрев такого тела, как показали эксперименты Щеголева, дает явный эффект уменьшения его веса.
Рис. 126. Шар с конусной выемкой
Данная форма тела предложена Щеголевым, как он пишет, только для того, чтобы «иметь возможность лучом лазера нагревать центральную точку шара». При таком способе нагрева, тепловое излучение распространяется от центра шара в стороны. Я обсуждал с ним этот вопрос в 2008 году, и пытался расширить понимание этой конструктивной особенности «термогравитатора». Однако, мы не пришли к единому мнению.
По-моему, именно выемка создает эффект асимметрии теплового потока, идущего от тела такой «яблочной» формы. Отсутствие вещества в верхней части шара (конусная выемка) обуславливает анизотропию теплового излучения, то есть, ненулевой суммарный поток тепла, который формируется от центральной точки вниз. Обыкновенный шар, очевидно, имеет изотропный тепловой поток, распространяющийся во все стороны.