Новый ум короля: О компьютерах, мышлении и законах физики — страница 57 из 132

t= 0.) Этот световой конус описывает историю света, испущенного при взрыве. На языке двумерного пространства история вспышки света была бы окружностью, расширяющейся со скоростью света с. В полном трехмерном пространстве вместо окружности мы имели бы сферу, расширяющуюся со скоростью света с,— сферический волновой фронт света. Но в рассматриваемом примере мы «подавляем» пространственное направление у и поэтому получаем всего лишь окружность, подобную круговым волнам, расходящимся от точки падения камня на поверхность пруда. Нетрудно понять, что на объемной картине пространства-времени мы получим расширяющиеся окружности, если рассмотрим серию горизонтальных сечений светового конуса, каждое последующее из которых расположено выше предыдущего. Эти горизонтальные сечения представляют собой различные пространственные описания волнового фронта света по мере возрастания временно́й координаты t. Одна из отличительных особенностей специальной теории относительности состоит в том, что никакая материальная частица не может двигаться быстрее света (подробнее об этом — чуть позднее). Все материальные частицы, возникшие при взрыве, должны отставать от света. На языке пространства-времени это означает, что мировые линии всех частиц, испущенных при взрыве, должны лежать внутри светового конуса.

Часто свет бывает удобно описывать не электромагнитными волнами, а как поток частиц, называемых фотонами. Мы можем мысленно представлять себе «фотон» как крохотный «пакет» электромагнитного поля, осциллирующего с высокой частотой. Термин «волновой пакет» физически более приемлем в контексте квантовых описаний, к которым мы перейдем в следующей главе, но пока для нас будут полезны и «классические» фотоны. В свободном пространстве фотоны всегда движутся по прямолинейным траекториям с постоянной скоростью с. Это означает, что, изображенная на картине пространства-времени Минковского мировая линия фотона всегда имеет вид прямой, образующей с вертикалью угол 45°. Фотоны, образовавшиеся при взрыве в точке О пространства-времени, описывают световой конус с вершиной в О.

Описанными выше свойствами должны обладать все точки пространства-времени. В начале пространства-времени нет ничего особенного: точка О ничем не отличается от любой другой точки. Следовательно, в любой точке пространства-времени должен быть свой световой конус, имеющий такой же смысл, как и световой конус, исходящий из начала пространства-времени. История любой вспышки света, или мировые линии фотонов, если угодно воспользоваться корпускулярным описанием света, всегда располагаются на поверхности светового конуса с вершиной в каждой точке пространства-времени — тогда как история любой материальной частицы всегда должна располагаться внутри соответствующего светового конуса. Это показано на рис.5.17. Семейство световых конусов во всех точках пространства-времени можно рассматривать как часть геометрии Минковского пространства-времени.

Рис.5.17. Картина геометрии Минковского

Что такое геометрия Минковского? Самая важная ее часть — структура светового конуса, хотя геометрия Минковского ею не исчерпывается. В этой геометрии существует понятие «расстояния», во многом аналогичное определению расстояния в евклидовой геометрии. В трехмерной евклидовой геометрии расстояние r от произвольной точки до начала координат, выраженное через обычные декартовы координаты, определяется соотношением

r2= x2+ y2+ z2

Рис.5.18. Сравнение «расстояний», измеренных в (а) евклидовой геометрии и (б) геометрии Минковского (здесь «расстояние» означает «прожитое время»)

(См. рис.5.18 а. Это — всего лишь теорема Пифагора; возможно, двумерный вариант этого соотношения более привычен читателю.) В нашей трехмерной геометрии Минковского выражение для расстояния очень похоже на евклидово (рис.5.18 б); существенное отличие состоит в том, что в геометрии Минковского это выражение содержит два знака минус:

Каков физический смысл величины «расстояния» s в этом выражении? Предположим, что мы рассматриваем точку Р с координатами ( t, x/ c, y/ c, z/ c), или ( t, x/ c, z/ c) в трехмерном случае; см. рис.5.16 — она лежит в световом конусе (будущего) точки О. Тогда прямолинейный отрезок ОР может представлять часть истории какой-то материальной частицы, например, испущенной при взрыве. «Длина» Минковского s отрезка ОР допускает прямую физическую интерпретацию. Это — продолжительность (длина) интервала времени, реально прожитого частицей между событиями О и Р! Иначе говоря, если бы существовали очень прочные и точные часы, намертво прикрепленные к частице [122], то разность между их показаниями в точках О и Р составила бы ровно s единиц времени. Вопреки ожиданиям, величина t сама по себе не описывает время, измеряемое этими гипотетическими часами — за исключением того случая, когда часы «покоятся» в нашей системе координат (т.е. имеют фиксированные значения координат х/ с, у/ с, z/ c), а это означает, что мировая линия часов имеет на «картине» вид вертикальной прямой. Таким образом, t будет задавать «время» только для тех наблюдателей, которые «стационарны» (т.е. чьи мировые линии — «вертикальные» прямые). Правильной мерой времени для движущегося (равномерно и прямолинейно из начала координат О) наблюдателя, согласно специальной теории относительности, служит величина s. Заключение, к которому мы пришли, весьма удивительно и полностью расходится с находящейся в согласии со «здравым смыслом» галилеево-ньютони-анской мерой времени, которая просто совпадает с координатным значением t. Обратите внимание на то, что релятивистская (в смысле Минковского) мера времени s всегда несколько меньше, чем t, если вообще существует какое-то движение (так как s2 меньше, чем t2, коль скоро не все координаты х/ с, у/ с, z/ c равны нулю), как это следует из приведенной выше формулы. Наличие движения (т.е. случай, когда отрезок ОР расположен не вдоль оси t) приводит к «замедлению» хода часов по сравнению с t, иными словами, по отношению к показаниям часов в нашей системе отсчета. Если скорость движения мала по сравнению с с, то величины s и t почти совпадают, чем объясняется то, что мы непосредственно не ощущаем «замедление хода движущихся часов». В другом предельном случае, когда скорость движения совпадает со скоростью света, точка Р лежит на световом конусе, и мы получаем s= 0. Световой конус есть не что иное, как геометрическое место точек, для которых «расстояние» в смысле Минковского (т.е. «время») от начала координат О действительно равно нулю. Таким образом, фотон вообще «не ощущает», как течет время! (Мы не можем позволить себе рассматривать еще более экстремальный случай, когда точка Р движется у самой поверхности снаружи светового конуса, так как это привело бы к мнимому значению s— квадратному корню из отрицательного числа, и нарушило бы правило, согласно которому материальные частицы, или фотоны, не могут двигаться быстрее света.) [123]

Понятие «расстояния» в смысле Минковского одинаково хорошо применимо к любой паре точек в пространстве-времени, одна из которых лежит внутри световою конуса другой, так что частица может двигаться из одной точки в другую. Мы просто будем считать, что начало координат О перенесено в какую-то иную точку пространства-времени. Кроме того, расстояние по Минковскому между точками соответствует интервалу времени, отсчитываемого часами, которые равномерно и прямолинейно движутся из одной точки в другую. Когда в качестве частицы выступает фотон, и расстояние в смысле Минковского обращается в нуль, мы получаем две точки, одна из которых лежит на световом конусе другой — что позволяет строить световой конус для последней.

Основная структура геометрии Минковского со столь причудливой мерой «длины» мировых линий, интерпретируемой как время, измеряемое (или «прожитое») физическими часами, несет в себе самую суть специальной теории относительности. В частности, читателю, возможно, известен так называемый «парадокс близнецов» в СТО:

один из братьев-близнецов остается на Земле, другой совершает путешествие на соседнюю звезду, двигаясь туда и обратно с огромной скоростью, приближающейся к скорости света. По возвращении выясняется, что близнецы состарились неодинаково: путешественник все еще молод, а его брат, остававшийся на Земле, стал дряхлым стариком. «Парадокс близнецов» легко описывается в терминах геометрии Минковского, и всякий может без труда понять, почему это явление — хотя и способное озадачить — парадоксальным все же не является. Мировая линия АС принадлежит тому из близнецов, который остается дома, тогда как мировая линия близнеца-путешествен-ника состоит из двух отрезков