Новый ум короля: О компьютерах, мышлении и законах физики — страница 63 из 132

д.), в принципе не сравнимы с масштабами нашего собственного головного мозга.

Спрашивается: что мы сейчас знаем о вычислимости в классической теории? Разумно предположить, что в общей теории относительности мы сталкиваемся с теми же проблемами, что и в СТО— если не считать тех различий в вопросах причинности и детерминизма, о которых было только что сказано. Там, где будущее поведение физической системы определяется начальными данными, оно в то же время должно (из соображений, изложенных при рассмотрении ньютоновской теории) быть вычислимо на основе тех же начальных данных [136](не считая «бесполезного» типа невычислимости, с которым столкнулись Пур-Эль и Ричардс в случае волнового уравнения, о чем уже говорилось выше; эта ситуация не реализуется при гладко изменяющихся данных). Действительно, трудно представить, каким образом в любой из рассмотренных мной до сих пор физических теорий могут возникнуть какие-либо существенные «невычислимые» элементы. Можно заведомо предсказать, что «хаотической» поведение является типичным для большинства из этих теорий, где весьма малые изменения начальных данных способны вызвать громадные расхождения в последующем поведении. (Именно так, насколько можно судить, обстоит дело в общей теории относительности; см. Мизнер [1969], Белинский и др. [1970].) Но, как я уже упоминал выше, довольно трудно понять, каким образом этот тип невычислимости (т.е. непредсказуемости) может быть «использован» в устройстве, с помощью которого мы могли бы попытаться «подчинить» себе возможные невычислимые элементы в физических законах. Если «разум» способен каким-то образом использовать невычислимые элементы, то последние должны, видимо, лежать вне классической физики. Нам придется еще раз вернуться к этому вопросу позднее — после того, как мы в общих чертах познакомимся с квантовой теорией.

Масса, материя и реальность

Произведем небольшую «ревизию» той картины мира, которую дала нам классическая физика. Во-первых, там существует пространство-время, выполняющее важнейшую функцию арены, на которой разыгрываются всевозможные физические процессы. Во-вторых, имеются физические объекты, задействованные в этих процессах, но ограниченные точными математическими законами. Физические объекты, о которых идет речь, бывают двух типов: частицы( корпускулы) и поля. Об истинной природе и отличительных особенностях частиц сказано немного, за исключением того, что у каждой частицы имеется своя мировая линия и каждая частица обладает индивидуальной массой покоя, (возможно) электрическим зарядом и т.д. С другой стороны поля описываются очень точно: электромагнитное поле удовлетворяет уравнениям Максвелла, а гравитационное поле — уравнениям Эйнштейна.

В описании частиц мы сталкиваемся с определенной двусмысленностью. Если частицы имеют столь малые массы, что их собственным влиянием на поля можно пренебречь, то такие частицы называются пробными частицами, и их движение под действием полей задается однозначно. Выражение для силы Лоренца описывает реакцию пробных частиц на электромагнитное поле, законы движения по геодезическим линиям — на гравитационное поле (или соответствующую комбинацию в случае присутствия обоих полей). Поэтому частицы надлежит рассматривать как точечные, т.е. имеющие одномерные мировые линии. Но в тех случаях, когда влиянием частиц на поля (и, следовательно, на другие частицы) пренебрегать нельзя, т.е. когда сами частицы становятся источниками поля, их следует рассматривать как объекты с ненулевой протяженностью в пространстве. Иначе поля в непосредственной близости от каждой частицы обращаются в бесконечность. Такие протяженные источники создают распределение заряда-тока ( ρ, j), необходимое для уравнений Максвелла, и тензор ЭНЕРГИЯ, входящий в уравнения Эйнштейна. Наряду с этим пространство-время, вмещающее в себя все частицы и поля, обладает изменчивой структурой, которая сама по себе описывает гравитационные явления. «Арена» принимает участие в том самом действии, которое на ней разыгрывается!

Это то, что нам говорит классическая физика о природе физической реальности. Ясно, что хотя очень многое уже известно — не стоит пока благодушно тешить себя надеждой на то, что картины мироздания, рисующиеся нам сейчас, не будут однажды перечеркнуты с появлением более глубоких теоретических построений. В следующей главе мы увидим, что даже те революционные преобразования нашей картины, которые совершила теория относительности, бледнеют и кажутся почти незначительными по сравнению с нововведениями квантовой теории. Но мы пока не закончили изучение классической теории и далеко не исчерпали всех ее возможностей. А у нее для нас еще припасен один сюрприз!

Чем в действительности является «материя»? Это реальная субстанция, из которой состоят физические объекты — «вещи» окружающего нас мира. Это то, из чего состоим вы и я, то, из чего сделаны наши дома. Каким образом можно квантифицировать эту субстанцию, т.е. выразить ее количественно? В наших элементарных учебниках физики излагается ясный ответ, который дал на этот вопрос Ньютон. Мерой количества материи, содержащейся в объекте или в системе объектов, служит его (или их) масса. Такой ответ действительно кажется верным: другой физической величины, которая может всерьез конкурировать с массой за право называться истинной мерой всей материи, содержащейся в объекте, просто не существует. Кроме того, масса сохраняется: масса, а следовательно, и полное материальное содержимое любой системы всегда должно оставаться одним и тем же.

Однако знаменитая формула Эйнштейна из специальной теории относительности

E= mc2

свидетельствует о способности массы ( m) превращаться в энергию ( Е)— и наоборот. Например, когда атом урана участвует в процессе распада, распадаясь на меньшие осколки, полная масса каждого из осколков (если бы их можно было привести в состояние покоя), была бы меньше исходной массы атома урана — но если учесть энергию движения, т.е. кинетическую энергию (см. гл.5, подгл. «Динамика Галилея и Ньютона») [137]каждого осколка и пересчитать ее в терминах массы, разделив на c2(по формуле Е= mc2), то мы обнаружим, что суммарная энергия осколков осталась неизменной. Масса действительно сохраняется, но, поскольку она отчасти состоит из энергии, после распада атома могут возникнуть сомнения, что именно масса служит мерой количества вещества в составе объекта. Энергия, по существу, зависит от скорости, с которой движется материя. Энергия движения скорого поезда весьма значительна, но если мы сидим в вагоне этого поезда, то с нашей точки зрения поезд вообще не движется. Энергия движения скорого поезда (хотя и не тепловая энергия случайных движений его отдельных частиц) была «сведена к нулю» подходящим выбором системы отсчета. В качестве поразительного примера, весьма наглядно демонстрирующего действие соотношения масса-энергия Эйнштейна, рассмотрим распад одной из разновидностей субатомных частиц — так называемого π°-мезона. Это — заведомо материальная частица, обладающая вполне определенной (положительной) массой. Через какие-нибудь 10 -16 секунды π°-мезон распадается (как атом урана, но гораздо быстрее), при этом почти всегда надва фотона(рис.5.36).

Рис.5.36.«Массивный» π°-мезон распадается на два безмассовых фотона. Пространственно-временна́я картина показывает, как сохраняется 4-вектор энергии-импульса: 4-вектор π°-мезона есть сумма 4-векторов двух фотонов, получаемая по правилу параллелограмма (на рисунке этот параллелограмм покрыт точками)

Для наблюдателя, покоящегося относительно π°-мезона, каждый фотон уносит половину энергии и, в действительности, половину массы π°-мезона. Однако, «масса» фотона носит несколько призрачный характер, ибо это — чистая энергия. Если бы мы получили возможность быстро двигаться в направлении одного из фотонов, то смогли бы уменьшить его массу до сколь угодно малой величины — поскольку собственная масса (или масса покоя— с этим понятием мы вскоре познакомимся) фотона равна нулю. Все сказанное вместе образует непротиворечивую картину сохраняющейся массы, но эта картина сильно отличается о той, которой мы располагали раньше. Масса может, как и прежде, служить в некотором смысле мерой «количества материи» — но наша точка зрения теперь кардинально изменилась: так как масса эквивалентна энергии, то масса системы, как и ее энергия, зависит от движения наблюдателя!

Сейчас нам стоит более четко сформулировать ту точку зрения, к которой мы в итоге пришли. Сохраняющаяся величина, которая исполняет роль массы — это единый объект, известный как четырехвектор энергии-импульса(или, в другой форме записи, 4-вектор энергии-импульса). Его можно условно изобразить в виде стрелки (вектора), исходящей из начала О пространства Минковского и направленной внутрь светового конуса будущего точки О(или, если речь идет о фотоне,— лежащей на поверхности этого конуса, см. рис.5.35).

Рис.5.35.4-вектор энергии-импульса

Эта стрела, направленная в ту же сторону, что и мировая линия объекта, содержит всю информацию о его энергии, массе и импульсе. Таким образом, « t-значение» (или «высота») конца стрелки, измеренная в системе отсчета наблюдателя, описывает массу(или энергию, деленную на с2) объекта, а пространственные компоненты задают импульс(деленный на