свет представляет собой колебания электромагнитного поля.
Каким образом свет может быть одновременно и частицами, и волнами? Ведь корпускулярная и волновая концепции представляются полностью противоположными. Тем не менее, одни экспериментальные факты явно указывают на то, что свет — это поток частиц, а другие на то, что свет — это волны. В 1923 году французский аристократ и проницательный физик маркиз Луи де Бройль продвинулся в этом вопросе еще дальше, высказав в своей докторской диссертации (которая снискала одобрение Эйнштейна!) идею о том, что частицы материи иногда ведут себя как волны! Частота v волны де Бройля любой частицы с массой m также удовлетворяет соотношению Планка. Комбинируя это с формулой Эйнштейна Е=mc2, можно найти связь частоты v с массой m:
hv= Е=mс2.
Таким образом, согласно идее де Бройля, раздельное существование частиц и полей, бывшее в почете у классической теории, отвергается природой! Действительно, все, что осциллирует с частотой v, может существовать только в виде дискретных порций с массой hv/ c2. Природа каким-то образом «умудряется» построить непротиворечивый мир, в котором частицы и осцилляции поля суть одно и то же! Или, точнее, мир природы состоит из каких-то более тонких составляющих, а представления о «частице» и «волне» лишь частично отражают реальность.
Еще один яркий пример проявления соотношения Планка нашел в 1913 году Нильс Бор — датский физик и выдающийся мыслитель XX века. Правила Бора требовали, чтобы угловой момент(гл.6 «Уравнение Шредингера; уравнение Дирака») электрона на ядерной орбите мог принимать только значения, кратные величине h/ 2π, для которой Дирак ввел более удобное обозначение ħ:
ħ= h/ 2π
Таким образом, разрешены только следующие значения углового момента (относительно любой оси),
0, ħ, 2ħ, 3ħ, 4ħ…
С учетом этого нововведения«планетарная» модель атома позволила с большой точностью вычислить частоты энергетических уровней и объяснить те «безумные» правила, которым в действительности следует природа.
Несмотря на поразительный успех, блестящая гипотеза Бора была только временной схемой, своего рода «новой заплатой на старые меха» и получила название «старой квантовой теории». Сегодняшняя квантовая физика произошла из двух независимых схем, предложенных позже немцем Вернером Гейзенбергом и австрийцем Эрвином Шредингером («матричной механики» в 1925 году и «волновой механики» в 1926 году, соответственно). Сначала две эти две схемы казались совершенно различными, но вскоре они были включены в более общую теорию как ее эквивалентные представления. Это было сделано главным образом британским физиком-теоретиком Полем Адриеном Морисом Дираком. В последующих главах мы попытаемся окинуть беглым взглядом квантовую теорию и ее необычные следствия.
Эксперимент с двумя щелями
Рассмотрим «архетипичный» квантовомеханический эксперимент, в котором пучок электронов, света или любых других «волн-частиц» направляется сквозь две узкие щели на расположенный позади них экран (рис.6.3).
Рис.6.З. Эксперимент с двумя щелями и монохроматическим светом (Обозначения на рисунке: S(англ. sourse)— источник, t(англ. top)— верхняя [щель], b(англ. bottom)— нижняя [щель]. — Прим. ред.)
Для большей конкретности выберем свет и условимся называть квант света «фотоном» согласно принятой терминологии. Наиболее очевидное проявление света как потока частиц(фотонов) наблюдается на экране. Свет достигает экрана в виде дискретных точечных порций энергии, которые всегда связаны с частотой света формулой Планка: Е= hv. Энергия никогда не передается в виде «половинки» (или иной доли) фотона. Регистрация фотонов представляет собой явление типа «все или ничего». Всегда наблюдается только целое число фотонов.
Но при прохождении через две щели фотоны обнаруживают волновое поведение. Предположим, что сначала открыта только одна щель (а вторая — наглухо закрыта). Пройдя через эту щель, пучок света «рассеивается» (это явление называется дифракцией и является характерным для распространения волн). Пока еще можно придерживаться корпускулярной точки зрения и считать, что расширение пучка обусловлено влиянием краев щели, заставляющем фотоны отклоняться на случайную величину в обе стороны. Когда свет, проходящий через щель, обладает достаточной интенсивностью (число фотонов велико), то освещенность экрана кажется равномерной. Но если интенсивность света уменьшить, то можно с уверенностью утверждать, что освещенность экрана распадется на отдельные пятна — в согласии с корпускулярной теорией. Яркие пятна располагаются там, где отдельные фотоны достигают экрана. Кажущееся равномерным распределение освещенности представляет собой статистический эффект, обусловленный очень большим числом участвующих в явлении фотонов (рис.6.4).
Рис.6.4. Картина распределения интенсивности на экране, когда открыта только одна щель: наблюдается распределение дискретных крохотных пятнышек
(Для сравнения, 60-ваттная электрическая лампа излучает около 100000000000000000000 фотонов в секунду!) При прохождении через щель фотоны действительно отклоняются случайным образом. Причем отклонения на различные углы имеют различные вероятности, что и порождает наблюдаемое распределение освещенности на экране.
Но главная трудность для корпускулярной картины возникает, когда мы открываем вторую щель! Предположим, что свет излучается желтой натриевой лампой, это значит, что он имеет чистый цвет без примеси, или, если воспользоваться физическим термином, свет монохроматический, т.е. имеет одну определенную частоту, или, на языке корпускулярной картины, все фотоны имеют одну и ту же энергию. Длина волны в данном случае составляет около 5 х 10 -7м. Предположим, что щели имеют в ширину около 0,001 мм и отстоят друг от друга на расстояние около 0,15 мм, а экран находится от них на расстоянии около 1м. При достаточно большой интенсивности света распределение освещенности все еще выглядит равномерным, но теперь в нем имеется некое подобие волнообразности, называемое интерференционной картиной— на экране примерно в 3 мм от центра наблюдаются полосы (рис.6.5).
Рис.6.5. Картина распределения интенсивности, когда открыты обе щели: наблюдается волнообразное распределение дискретных пятнышек
Открывая вторую щель, мы надеялись увидеть вдвое бо́льшую освещенность экрана (и это, действительно, было бы верно, если рассматривать полную освещенность экрана). Но оказалось, что теперь детальная картина освещенности полностью отлична от той, которая имела место при одной открытой щели. В тех точках экрана, где освещенность максимальна, его интенсивность оказывается не в два, а в четыре раза больше той, что была прежде. В других же точках, где освещенность минимальна,— интенсивность падает до нуля. Точки с нулевой интенсивностью, возможно, и представляют наибольшую загадку для корпускулярной точки зрения. Это те точки, которых фотон мог бы благополучно достичь, если бы открыта была только одна щель. Теперь же, когда мы открыли и вторую щель, неожиданно оказалось, что нечто помешало фотону попасть туда, куда он мог бы попасть прежде. Как могло случиться, что, предоставив фотону альтернативный маршрут, мы в действительности воспрепятствовали его прохождению по любому из маршрутов?
Если в качестве «размера» фотона принять длину его волны, то в масштабе фотона вторая щель находится от первой на расстоянии около 300 «размеров фотона» (а ширина каждой щели составляет около двух длин волн фотона) (рис.6.6).
Рис.6.6. Щели «с точки зрения» фотона! Разве может быть важно фотону, открыта или закрыта вторая щель, находящаяся на расстоянии около 300 «размеров фотона»?
Каким образом фотон, проходя через одну из щелей, «узнает» о том, открыта или закрыта другая щель? На самом деле, в принципе не существует предела для расстояния, на которое могут быть разнесены щели, для того, чтобы произошло явление «гашения или усиления».
Создается впечатление, что когда свет проходит через одну или две щели, он ведет себя как волна, а не как корпускула (частица)! Такое гашение — деструктивная интерференция— хорошо известное свойство обычных волн. Если каждый из двух маршрутов порознь может быть пройден волной, то когда для нее открыты оба маршрута, может оказаться, что они взаимно погасят друг друга. На рис.6.7 показано, как это происходит.
Рис.6.7. Чисто волновая картина позволяет нам осмыслить распределение светлых и темных полос на экране (но не дискретность) на языке интерференции волн
Когда какая-то часть волны, пройдя через одну из щелей, встречает часть волны, прошедшую через другую щель, то они усиливают друг друга, если находятся «в фазе» (т.е. если встречаются два гребня или две впадины), или гасят друг друга, если они находятся «в противофазе» (т.е. гребень одной части встречается с впадиной другой). В эксперименте с двумя щелями яркие места на экране возникают там, где расстояния до щелей отличаются на целое число длин волн так, что гребни приходятся на гребни, а впадины — на впадины, а темные места возникают там, где разность этих расстояний равна полуцелому числу длин волн так, что гребни встречаются с впадинами, а впадины — с гребнями.