Новый ум короля: О компьютерах, мышлении и законах физики — страница 81 из 132

R- процедурой всякий раз, когда эффект увеличивается до классического уровня. Но проблема нелокальности и явных трудностей с относительностью сохраняются. Рассмотрим некоторые из них.

Предположим, что у нас имеется физическая система, состоящая из двух подсистем А и В. Пусть, например, А и В— две различные частицы. Предположим, что для состояния частицы А существуют две (ортогональные) альтернативы | α) и | ρ), а для состояния частицы В— две (ортогональные) альтернативы | β) и | σ). Как мы уже видели выше, общее комбинированное состояние системы будет не просто произведением (конъюнкцией « и») некоторого состояния частицы А и некоторого состояния частицы В, а суперпозицией («плюс») таких произведений. (Тогда мы говорим, что А и В коррелированы.) Пусть состояние системы представимо суперпозицией

| α)| β) + | ρ)| σ).

Произведем измерение типа «да или нет» над частицей А, которое отличает состояние | α) ( ДА) от состояния | ρ) ( НЕТ). Что произойдет при этом с частицей B? Если измерение даст ответ ДА, то результирующим должно быть состояние

| α)| β),

а если измерение даст ответ НЕТ, то

| ρ)| σ)

Таким образом, измерение, производимое нами над частицей А, заставляет состояние частицы В измениться скачком: перейти в | β), если получен ответ ДА, и перейти в | σ), если получен ответ НЕТ! Частица В не обязательно должна находиться поблизости от частицы А; частицы могут быть разделены расстоянием в несколько световых лет. И все же частица В скачком переходит из одного состояния в другое одновременно с измерением, производимым над частицей А!

«Но постойте»,— вполне может сказать читатель. К чему все эти подозрительные «скачки»? Почему не происходит просто следующее: представьте себе ящик, о котором известно, что в нем лежит один черный и один белый шар. Предположим, что некто извлек шары из ящика и, не глядя, отнес их в противоположные углы комнаты. Затем он взглянул на один шар и обнаружил, что он белый (аналог упоминавшегося выше состояния | α)), тогда — алле-оп!— другой шар оказывается черным (аналог состояния | β))! С другой стороны, если первый шар оказался черным (аналог состояния | ρ)), то в мгновение ока состояние второго шара скачком переходит в «заведомо белый» (аналог состояния | σ)). Никто из читателей или читательниц в здравом уме не станет упорно приписывать внезапный переход второго шара из состояния «неопределенности» в состояние «определенно черный» или «определенно белый» некоторому таинственному нелокальному «влиянию», мгновенно доходящему до него от первого шара в тот самый момент, когда наблюдатель рассмотрел первый шар.

Но природа действует еще более изощренно. Действительно, в приведенном выше примере можно было бы представить, что система уже «знала», что частица В находилась в состоянии | β), а частица А— в состоянии | α) (или что частица В находилась в состоянии | σ), а частица А— в состоянии | ρ)) до того, как над А было произведено измерение; и только экспериментатору состояния частиц не были известны. Обнаружив, что частица А находится в состоянии | α), он просто заключил, что частица В находится в состоянии | β). Такая точка зрения была бы «классической» — как в локальной теории скрытых переменных — и никаких скачкообразных физических переходов из одного состояния в другое в действительности не происходит. (Все это происходит лишь в уме экспериментатора!) Согласно такой точке зрения любая часть системы заранее «знает» результаты любого эксперимента, который мог бы быть произведен над ней. Вероятности возникают только из-за отсутствия такого знания у экспериментатора. Достойно удивления, что, как оказывается, эта точка зрения не срабатывает для объяснения всех загадочных нелокальных вероятностей, возникающих в квантовой теории!

Чтобы убедиться в этом, рассмотрим ситуацию, аналогичную изложенной выше, но такую, что выбор измерения, производимого над системой А, остается нерешенным до тех пор, пока системыA иB не окажутся пространственно разделенными. Тогда, как представляется, факт выбора измерения мгновенно окажет влияние на поведение системы B! Этот кажущийся парадоксальным «мысленный эксперимент» ( ЭПР-типа) был предложен Альбертом Эйнштейном, Борисом Подольским и Натаном Розеном [1935]. Я опишу его вариант, предложенный Давидом Бомом [1951]. То, что никакое локальное «реалистическое» (т.е. типа скрытых переменных или «классического типа») описание не может дать правильные квантовые вероятности, следует из одной замечательной теоремы Джона С. Белла (Белл [1987], Рэй [1986], Сквайерс [1986]).

Предположим, что две частицы со спином 1/ 2, которые я буду называть электроном и позитроном(т.е. антиэлектроном), возникли в результате распада одной частицы со спином 0 в некоторой точке (центре), и что они движутся от центра в противоположных направлениях (рис.6.30).

Рис.6.30. Частица с нулевым спином распадается на две частицы с половинным спином — электрон Б и позитрон Р. Представляется, что измерение спина одной из частиц со спином 1/2 мгновенно фиксирует состояние спина другой частицы

Из закона сохранения углового момента следует, что спины электрона и позитрона в сумме должны давать 0, так как угловой момент исходной частицы был равен 0. Отсюда следует, что когда мы измеряем спин электрона в каком-нибудь направлении, то, какое направление мы бы ни выбрали, спин позитрона окажется направленным в противоположную сторону! Электрон и позитрон могут быть разделены расстоянием в несколько миль или даже световых лет, тем не менее кажется, что сам выбор измерения, производимого над одной частицей, мгновенно фиксирует ось спина другой частицы!

Попытаемся теперь выяснить, как квантовый формализм приводит нас к такому заключению. Представим состояние двух частиц с суммарным нулевым угловым моментом вектором состояния | Q). Тогда имеем соотношение

| Q) = | E↑) | P↓) — | E↓) | P↑),

где Е означает электрон, а Р— позитрон. Здесь все описывается в терминах направлений спина «вверх/вниз». Мы видим, что полное состояние является линейной суперпозицией электрона со спином вверх и позитрона со спином вниз, а также электрона со спином вниз и позитрона со спином вверх. Таким образом, если мы измеряем спин электрона в направлении «вверх/вниз» и обнаруживаем, что спин направлен вверх, то мы должны скачком перейти к состоянию | E↑) | P↓), поэтому спиновое состояние позитрона должно быть направлено вниз. С другой стороны, если мы обнаруживаем, что спин электрона направлен вниз, то состояние скачком переходит в | E↓) | P↑), поэтому спин позитрона направлен вверх.

Предположим, что мы выбрали какую-то другую пару противоположных направлений, например, вправо и влево, где

| E→) = | E↑) + | E↓), | P→) = | P↑) + | P↓)

и

| E←) = | E↑) — | E↓), | P←) = | P↑) — | P↓).

Тогда мы находим (если угодно, можете проверить выкладки):

| E→) | P←) — | E←) | P→) = (| E↑) + | E↓) (| P↑) — | P↓) — (| E↑) — | E↓)) (| P↑) + | P↓)) = | E↑)| P↑) + | E↓)| P↑) — | E↑)| P↓) — | E↓)| P↓) — | E↑)| P↑) + | E↓)| P↑) — | E↑)| P↓) + | E↓)| P↓) = - 2(| E↑)| P↓) — | E↓)| P↑) = - 2| Q)

т.е. мы получили (с точностью до несущественного множителя - 2) то же самое состояние, из которого мы «стартовали». Таким образом, наше исходное состояние можно одинаково хорошо считать линейной суперпозицией электрона со спином вправо, позитрона со спином влево, и электрона со спином влево, позитрона со спином вправо! Выписанное выше выражение полезно, если мы решили измерять спин электрона в направлении вправо-влево вместо направления вверх-вниз. Если мы обнаружим, что спин электрона действительно направлен вправо, то состояние системы скачком переходит в | E→) | P←), поэтому спин позитрона направлен влево. С другой стороны, если мы обнаружим, что спин электрона направлен влево, то состояние системы скачком переходит в | E←) | P→), поэтому спин позитрона направлен вправо. Если бы мы стали измерять спин электрона в любом другом направлении, то получили бы соответствующую ситуацию: спиновое состояние позитрона мгновенно перешло бы скачком либо в измеряемое направление, либо в противоположное направление, в зависимости от измерения спина электрона.

Почему мы не можем моделировать спины наших частиц — электрона и позитрона аналогично тому, как мы поступили в приведенном выше примере с черным и белым шарами, извлекаемыми из ящика? Будем рассуждать на самом общем уровне. Вместо черного и белого шаров мы могли бы взять два каких-нибудь технических устройства Е и Р, первоначально образовывавших единое целое, а затем начавших двигаться в противоположные стороны. Предположим, что каждое из устройств Е и Р способно давать ответ