Нулик - мореход — страница 11 из 20

16 нуляля

Когда капитан вернулся, в руках у него был чертёж. Мы с Пи заглянули в него и только плечами пожали: из чего следует, что круг разделён на равновеликие части?

Но капитан словно бы и не заметил нашего недоверия. Он положил чертёж на бочку и стал объяснять.

- Перед вами круг с двумя взаимно перпендикулярными диаметрами. Каждый диаметр разделён на три равные части, а каждая из этих трёх равных частей, в свою очередь, представляет собой диаметр малого круга. Как видите, таких малых кругов в большом круге пять, и они совершенно одинаковы, то есть конгруэнтны. Известно, что если диаметр круга уменьшить, допустим, в три раза, то площадь круга уменьшится при этом в трижды три раза. Иными словами, площадь круга зависит от диаметра, взятого во второй степени (или, как говорят, от диаметра в квадрате). Отсюда следует, что площадь каждого из пяти малых кругов в девять раз меньше большого. Ведь три в квадрате равно девяти (32 = 9)!

Капитан перевёл дух и продолжал:

- Остаётся вычислить, чему равна площадь каждой из четырёх заштрихованных частей, заключённых между малыми кругами.

- Ну, это просто! - сейчас же выскочил я.- Если площадь большого круга принять за 9/9, то площадь всех пяти малых кругов составит 5/9, а на оставшиеся четыре части придётся 4/9. И части эти, само собой, тоже конгруэнтны.

- Отсюда ясно,- подытожил Пи,- что площадь каждой из заштрихованных частей также составляет 1/9 часть площади большого круга. Вот и выходит, что площадь большого круга разделена на девять равновеликих частей.

- Ура! - заорал я и завертелся на одной ножке.-Задача решена! Но вот как вам удалось сделать такой точный чертёж? Неужели только с помощью циркуля и линейки?

- О чертеже - потом,- сказал Единица.- Сперва разгородим коробку и расселим буянов, пока они не разбушевались снова.

В общем, не прошло и часа, как все девять тьфу-тьфу мирно спали в своих равновеликих отсеках. А во сне им, между прочим, цены нет! Я даже думаю, не отсюда ли пошла поговорка: "Хорош, когда спит!" Эти, во всяком случае, были так хороши, что штурман Игрек, несмотря на свои болячки, прямо влюбился в них. Он то и дело заглядывал в коробку, гладил то одного, то другого и даже называл милыми крошками, не забывая, впрочем, каждый раз сплюнуть через левое плечо: "Тьфу-тьфу, не сглазить!" Должно быть, на всякий случай...



Но капитан нашёл-таки способ отвлечь его: хватит ему умиляться! Пусть лучше объяснит нам, как сделать чертёж.

Сказать по правде, мы не очень-то обрадовались. Штурман у нас - полная противоположность капитану: горячий, нетерпеливый, к тому же до отказа нафарширован морскими словечками.

На сей раз к обычному его присловью прибавилось нечто новенькое.

- Бом-брам-фок! - заревел он.- Четыре взмаха циркулем, один - линейкой!

Мы уж подумали, что это очередное морское изречение, но штурман объяснил, что четыре взмаха циркулем и один линейкой - вот всё необходимое, чтобы сделать наш чертёж, а затем уж и вообще решить любую геометрическую задачу на построение.

Далее выяснилось, что для решения любой задачи на построение надо, в свою очередь, уметь решать две простейшие. И так как никто не начинает со второго (кстати, любимая поговорка кока), Игрек начал объяснять первую.

- Отдать концы! - гаркнул он и начертил на бумаге отрезок прямой.- Вот вам отрезок АВ. Требуется провести через его середину перпендикуляр. Что ж вы стоите? Выполняйте!

Легко сказать - выполняйте! А как? Сперва стали искать середину. Пи согнул было листок так, чтобы точки А п В совместились. Но бумага, как на грех, не просвечивала, и у него ничего не вышло.

- Бом-брам-фок! Штурман в сердцах швырнул бумажку за борт и достал большой деревянный циркуль с угольком вместо мела. Потом он вынул из кармана ещё один уголёк и провёл отрезок АВ прямо на палубе.

- Так-то! -сказал он ядовито.- Небось палубы пополам не перегнёшь!

- Уж конечно,- подтвердил я.- Но что же нам делать?

- Что за вопрос! - вскипел он.- А циркуль на что? Он засек циркулем две дужки из точки А и две - из точки В, а точки пересечения дужек обозначил буквами С - НАД отрезком АВ и Д - это уж ПОД ним.

- Вот вам и четыре взмаха циркулем,-сказал он.-Остаётся один взмах линейкой.

Тут он схватил линейку, соединил точки С и Д и посмотрел на нас взглядом полководца, выигравшего битву.

- То-то, бом-брам-фок! С одной задачей покончено. Переходим ко второй.

Он снова вычертил отрезок АВ, а повыше и чуть правее точки А поставил ещё одну точку - С.

- Задачка - проще некуда,-заявил он - Предлагается провести через точку С отрезок прямой, параллельный отрезку АВ. Ну-ка, раз, два, взяли!

На этот раз нам повезло: мы почему-то сразу догадались, что засечку следует делать из точки С. Только на какое расстояние раздвинуть циркуль? Оказалось, на такое, чтобы уголёк пересек отрезок АВ. Так мы и сделали, а точку пересечения обозначили буквой Д.

Один взмах был позади, и мы перешли к следующему: воткнули ножку циркуля в это самое Д и тем же раствором провели вторую дужку, которая пересекла отрезок АВ чуть правее. Эту точку обозначили буквой Е.

Потом иголка воткнулась в точку Е, а ножка циркуля описала дугу над отрезком и засекла дужку примерно на уровне точки С. Это был уже третий взмах. Оставался четвёртый, и последний.

Тут циркуль снова вонзился в точку С и тем же раствором провёл четвёртую дужку, которая пересеклась с предыдущей. Эту четвёртую точку окрестили буквой F.

- Циркуль отставить! Линейку на абордаж! - скомандовал Игрек и соединил отрезком прямой точки С и F. Потом он отшвырнул линейку и заорал: - Отбой! Отрезок CF параллелен АВ!

Теперь можно было приступать к нашему чертежу, но штурман спохватился, что не познакомил нас с ещё одной, совсем крохотной, но необходимой задачкой на построение.

- Так как эта третья задачка сводится к двум первым, будете решать сами,-сказал он и снова начертил отрезок АВ.- Требуется разделить данный отрезок на несколько одинаковых частей. Хоть на три.

Что и говорить, не сразу нам это далось, зато теперь-то уж мы знаем, как это делается.

Берётся линейка, и к отрезку АВ из точки А проводится другой отрезок, любой длины и под любым острым углом. На нём, опять-таки от точки А, но уже с помощью циркуля откладываются ещё три совершенно одинаковых отрезка: АС, СД и ДЕ. Потом точки Е и В соединяются линейкой, а через точки Д и С проводятся отрезки, параллельные ЕВ (точки пересечения этих отрезков с АВ мы обозначили буквами К и F).




Так мы научились делить отрезок на равные части.

- Да, но почему эти отрезки равны между собой? Из чего это следует? Да из того, бом-брам-фок, что полученные нами треугольники AFC, АКД и ABE подобны! Ведь углы у них конгруэнтны! -загремел штурман.- А раз так - значит, стороны этих треугольников соответственно пропорциональны.

- Действительно,- согласился Пи.- Сторона АС относится к стороне АД как 1:2. Значит, как 1:2 относится также сторона AF к стороне АК. Отсюда AF = FK. По тем же причинам равны и отрезки FK и КВ.

Вот теперь можно было приступить к нашему чертежу.

Штурман начал с того, что вычертил окружность и предложил нам найти её центр.

- Что тут искать! - засмеялся я.- Центр там, где дырочка от циркуля.

- Э, нет, так дело не пойдёт! - сказал Игрек. Он достал блюдце, положил на палубу и обвёл угольком.

- Вот вам окружность без дырочки. Где у неё центр? Не знаете? А если я скажу, что диаметр, перпендикулярный к любой хорде, делит эту хорду пополам?

- Тогда другое дело! - обрадовался Пи.- Значит, надо провести какую-нибудь хорду, найти её середину, а затем провести через эту середину перпендикуляр. Так мы найдём диаметр круга. Теперь то же самое проделаем с диаметром, проведём через его середину перпендикуляр и получим, таким образом, ещё один диаметр. Ну, а точка пересечения двух диаметров и есть центр круга.

Тут мы принялись за дело, и через некоторое время на палубе появился чертёж капитана. Мы построили его сами, с помощью тех задач, с которыми нас познакомил штурман. При этом главную роль сыграли циркуль и линейка. Ну и, конечно же, голова! Без головы, как известно, ничего не делается. Даже глупости.


Порт Ариф

17 нуляля

В пять утра меня разбудил Пи. Он сказал, что к нашему Фрегату пришвартовалась быстроходная бригантина, идущая в Карликанию, и хорошо бы отправить на ней Стакса и Топса. А то с ними на судне хлопот не оберёшься: того и гляди, свалятся в воду!

Как ни жаль было расставаться с обезьянками, я всё же согласился и быстро снарядил их в дорогу. Воротясь в каюту один, я ещё поспал немножко и проснулся в прескверном настроении. Очень уж мне не хватало моих мартышек!

Но на нашем Фрегате не соскучишься. Иной раз обыкновенные, казалось бы, вещи оборачиваются здесь самым неожиданным образом.

Знаете ли вы, например, что такое насморк? Думаете, насморк - это когда чихаешь и всё время лезешь в карман за носовым платком? Ничего подобного! Насморк - функция сквозняка. Двойка в дневнике - функция невыученного урока. А хороший нагоняй - функция этой самой двойки в дневнике. По-вашему, я выдумываю? Честное слово, нет!

Дело было так. Наш Фрегат вошёл в порт Ариф.

"Красивое название! Наверное, от слова арифметика",- подумал я и ошибся.

Ариф - название сокращённое, и в нём объединились два слова: аргумент и функция. Впрочем, аргумент и функция - тоже понятия математические. И то и другое - величины переменные. Только вот аргументы - народ независимый. Они изменяются по собственной воле. А функции целиком зависят от аргументов. Иногда от одного, иногда - от многих.

Вот, например, скорость нашего Фрегата - функция, которая зависит от многих аргументов. От силы ветра. От его направления. От умения команды ставить паруса. От искусства штурмана держать правильный курс. Влияет на скорость также и вес судна, и даже форма его. Словом, скорость Фрегата зависит кит знает от скольких причин... то бишь аргументов. И потому эта функция не простая, а сложная.