О Бесконечном — страница 3 из 5

Но реакция не заставила себя ждать; она разыгралась очень драматически. Произошло нечто, аналогичное тому, что случилось при развитии исчисления бесконечно малых. На радостях по поводу новых богатых результатов стали явным образом недостаточно критически относиться к законности умозаключений; поэтому уже при простом образовании понятий и применении умозаключений, постепенно ставших обычными, выявились противоречия, сначала единичные, а затем всё более резкие и всё более серьёзные: так называемые парадоксы теории множеств. В особенности это относится к противоречию, найденному Цермело и Расселом, опубликование которого оказало на математический мир прямо-таки катастрофическое действие. Перед лицом этих парадоксов Дедекинд и Фреге фактически отказались от своей точки зрения и очистили поле битвы.

Дедекинд долго сомневался перед тем, как выпустить новое издание своей работы «Что такое числа, и чем они должны быть» («Was sind und was sollen die Zahlen»), которая в своё время открыла новую эпоху; у Фреге так же была тенденция считать свою книгу «Основные законы арифметики» («Grundgesetze der Arithmetik») ошибочной, в чём он признаётся в одном из своих послесловий. И на учение Кантора с различных сторон были произведены бурные нападки. Контрдвижение было столь стремительно, что общеупотребительнейшие и плодотворнейшие понятия математики, простейшие и важнейшие её умозаключения оказались под угрозой, и применение их должно было быть запрещено. Правда, не было недостатка и в защитниках старого; но мероприятия защиты были очень слабы, и они не были направлены единым фронтом в нужную сторону. Лекарств против парадоксов рекомендовали слишком много, методы объяснений были слишком разнообразны.

Надо согласиться, что состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в математике — этом образце достоверности и истинности, — образование понятий и ход умозаключений, как их всякий изучает, преподаёт и применяет, приводят к нелепостям. Где же искать надёжность и истинность, если даже само математическое мышление даёт осечку?

Но существует вполне удовлетворительный путь, по которому можно избежать парадоксов, не изменяя при этом нашей науке. Те точки зрения, которые служат для открытия этого пути и те пожелания, которые указывают нам направление, суть следующие:

1. Мы будем заботливо следить за плодотворными способами образования понятий и методами умозаключений везде, где является хотя бы малейшая надежда, будем ухаживать за ними, поддерживать их, делать их годными к использованию. Никто не может изгнать нас из рая, который создал нам Кантор.

2. Надо повсюду установить ту же надёжность заключений, которая имеется в обыкновенной, низшей теории чисел, в которой никто не сомневается и где возникают противоречия и парадоксы только вследствие нашей невнимательности.

Достижение этой цели возможно, очевидно, лишь после того, как мы полностью выясним сущность бесконечности.

Раньше мы уже выяснили, что какие бы опыты и наблюдения и какую бы отрасль науки мы ни рассматривали, нигде в действительности мы не находим бесконечности. Должны ли мысли о вещах быть столь непохожими на то, что происходит с вещами, должны ли они сами по себе идти другим путём, совершенно в стороне от действительности? Разве не ясно, что когда мы, как нам кажется,  в каком-то смысле познаём реальность бесконечного, на самом деле мы лишь позволяем себе соблазниться чудовищно большими и чудовищно малыми размерами, которые так часто встречаются в действительности. А содержательные логические выводы, когда мы их применяли к действительным вещам или событиям, — разве они нас где-либо обманывали и где-либо нам изменяли? Нет — содержательное логическое мышление необходимо. Оно нас обманывало только тогда, когда мы принимали произвольные абстрактные способы образования понятий; мы в этом случае как раз недозволенно применяли содержательные выводы, т.е. мы, очевидно, не обратили внимания на предпосылки, необходимые для применения содержательного вывода. В признании того, что такие предпосылки имеются и должны приниматься во внимание, мы согласны с философами, особенно с Кантом. Уже Кант учил — и это составляет существенную часть его учения, — что математика обладает не зависящим от всякой логики устойчивым содержанием, и потому она никогда не может быть обоснована только с помощью логики, вследствие чего, между прочим, стремления Дедекинда и Фреге должны были потерпеть крушение. Наоборот, кое-что уже дано в нашем представлении в качестве предварительного условия для применения логических выводов и для выполнения логических операций: определённые, внелогические, конкретные объекты, которые имеются в созерцании до всякого мышления в качестве непосредственных переживаний. Для того чтобы логические выводы были надёжны, эти объекты должны быть обозримы полностью во всех частях; их показания, их отличие, их следование, расположение одного из них наряду с другим даётся непосредственно наглядно, одновременно с самими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении. Это — та основная философская установка, которую я считаю обязательной как для математики, так и вообще для всякого научного мышления, понимания и общения и без которой совершенно невозможна умственная деятельность. В частности, в математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых, согласно нашей установке, непосредственно ясен и может быть впоследствии узнаваем.

Припомним сущность и методику теорий обыкновенных конечных чисел. Её, разумеется, можно построить отдельно, конструируя числа с помощью содержательных, наглядных соображений. Однако математическая наука отнюдь не исчерпывается числовыми равенствами и не сводится к одним только этим равенствам. Можно утверждать, тем не менее, что она является аппаратом, который при применении его к целым числам всегда должен давать верные числовые равенства. В таком случае ставится требование настолько исследовать строение этого аппарата, чтобы в этом убедиться. Вспомогательным средством при этом служит нам только тот же конкретно содержательный способ рассмотрения и конечная установка мышления, как они применялись для получения числовых равенств при построении теории чисел. Это познавательное требование в действительности выполнимо, т.е. можно получить чисто наглядным, конечным способом — совершенно так же, как получаются истины теории чисел — те рассмотрения, которые ручаются за достоверность математического аппарата.

Рассмотрим теперь ближе теорию чисел. В теории чисел мы имеем знаки:

1, 11, 111, 11111, ...

где каждый числовой знак можно распознать благодаря тому, что в нём за 1 всегда следует опять 1. Эти числовые символы — они и являются объектом наших рассуждений — сами по себе не имеют никакого значения. Кроме этих знаков в элементарной теории чисел мы пользуемся ещё и другими знаками, которые нечто означают и служат для сообщений. Так, мы пользуемся числовым знаком 2 для сокращённой записи числового знака 11, или числовым знаком 3 для сокращённой записи числового знака 111; далее, мы применяем знаки + =, > и другие, которые служат нам для сообщения утверждений. Так, 2 + 3 = 3 + 2 должно служить для сообщения того факта, что 2 + 3 и 3 + 2, если принимать во внимание сокращённую запись, которой мы пользовались, являются одним и тем же числовым знаком, а именно числовым знаком 11111. Точно так же 3 > 2 служит для сообщения того факта, что знак 3, т. е. 111, выступает за знаком 2, т. е. 11, или что этот последний знак является частью первого.

При сообщениях мы будем пользоваться в качестве числовых знаков также и буквами а, b, c. Согласно этому, b>а является сообщением того, что числовой знак b выступает за числовым знаком a. Точно так же, если исходить из этой точки зрения, a + b = b + a есть сообщение, что числовой знак a + b означает то же, что и числовой знак b + a. При этом содержательная правильность этого сообщения может быть доказана с помощью содержательного вывода, и мы можем с этим наглядным содержательным способом обсуждения пойти очень далеко вперёд.

Я хотел бы показать вам только один пример, в котором переходят за этот наглядный способ обсуждения. Самым большим (39 цифр) из известных до сих пор простых чисел является

р = 170 141 183 460 469 231 731 687 303 715 884 105 727.

С помощью известного евклидовского способа мы можем доказать, рассуждая полностью в рамках нашей установки, что между p + 1 и p! + 1 безусловно существует новое простое число. Это высказывание само по себе также соответствует нашей конечной установке, так как слово «существует» служит в данном случае только для того, чтобы короче сформулировать следующее высказывание:

Безусловно: p + 1 или p + 2 или p + 3 ... или p! + 1 есть простое число. Но, далее, очевидно, то же я  могу выразить словами: существует простое число

1.      >p и в то же время

2.      <= p! + 1

Отсюда мы приходим к формулировке теоремы, которая выражает только часть евклидовского утверждения; существует простое число >p. Хотя по своему содержанию это последнее утверждение гораздо уже евклидовского и хотя переход кажется совершенно безобидным, всё же это есть прыжок в трансфинитное [в смысле «законечное» — прим. ред.], если только это частичное высказывание рассматривать, как самостоятельное утверждение, вне вышеприведённой связи.

Как это может быть? Мы имеем здесь высказывание о существовании: «существует»! Правда, мы встречаем уже это слово в теореме Евклида. Однако там, как я уже говорил, слово «существует» представляло собою другой сокращённый способ выражения того, что либо p + 1, либо p + 2, либо p + 3 ..., либо