О Бесконечном — страница 4 из 5

p! + 1 есть простое число, подобно тому, как длинную фразу: «либо этот кусок мела красен, либо тот кусок мела красен, либо ..., либо кусок мела, лежащий вон там, красен» заменяют короткой: «среди этих кусков мела имеется красный кусок». Такого рода утверждение, говорящее о том, что среди некоторой конечной совокупности предмет, обладающий определённым свойством, «существует», полностью соответствует нашей конечной установке. Напротив того, альтернатива «либо: р + 1, либо p+ 2, либо р + 3, ... и так до бесконечности — есть простое число» является, так сказать, бесконечной «или-связью», и подобный переход к бесконечному без особого объяснения и без необходимых при случае правил предосторожности так же мало дозволен, как мало дозволен в анализе переход от конечных произведений к бесконечным; и, прежде всего, он, вообще говоря, не имеет смысла.

Вообще, если исходить из конечной точки зрения, то высказывание вида «существует число, имеющее такое-то и такое-то свойство» имеет смысл только как частичное высказывание, т. е. как часть более определённого высказывания, более точное содержание которого, однако, для многих приложений несущественно.

Таким образом, мы натолкнулись здесь на трансфинитное при разложении высказывания о существовании на части, ни одна из которых не может быть истолкована как «или-связь». Равным образом, мы приходим к трансфинитному, когда мы отрицаем общее, т. е. распространяющееся на любые числовые знаки, утверждение. Так, например, для высказывания: если а — числовой знак, то всегда должно быть

a + 1 = 1 + a,

— с конечной точки зрения не может быть составлено его отрицание. Мы можем себе это уяснить, если вспомним, что если исходить из этой точки зрения, то это высказывание означает не соединение бесконечного множества числовых равенств союзом «и», а суждение гипотетического характера, которое нечто утверждает только для того случая, когда перед нами имеется некоторый числовой знак.

Отсюда, в частности, следует, что в смысле конечной установки нельзя применить альтернативу, согласно которой равенство, подобное вышеприведённому, включающее в себя неопределённый числовой знак, либо выполняется для любого числового знака, либо опровергается противоречащим примером. Действительно, эта альтернатива, являющаяся применением закона Tertium non datur (закона исключённого третьего), существенно опирается на предположение, что утверждение общей действенности этого равенства может быть отрицаемо.

Во всяком случае констатируем: если мы остаёмся в области конечных высказываний, как нам это и приходится делать сначала, то в таком случае имеют место не поддающиеся обозрению логические соотношения, и эта необозримость доходит до нестерпимости, когда слова «все» и «существуют» комбинируются и вставляются в теоремы. Во всяком случае, те логические законы, которыми люди, с тех пор как они мыслят, всегда пользовались и о которых учил уже Аристотель, несправедливы в конечном. Мы бы могли найти выход в том, чтобы установить логические законы, справедливые в области конечных высказываний; но это не принесло бы нам никакой пользы, так как мы ведь не хотим отказаться от пользования простыми законами аристотелевой логики, и никто, говори он даже ангельским языком, не удержит людей от того, чтобы отрицать любые утверждения, образовывать частичные суждения и применять закон исключённого третьего. Как же нам теперь быть?

Вспомним, что мы — математики и в качестве таковых уже не раз находились в аналогичном затруднительном положении и что тогда нас выводил из этого положения гениальный метод идеальных элементов. Некоторые яркие примеры применения этого метода я приводил уже вам в начале доклада. Так же, как было введено i = sqrt(-1) для того, чтобы удержать законы алгебры в простейшем виде, например, теорему о существовании и числе корней уравнения; так же, как произошло введение идеальных факторов, опять-таки для того, чтобы оставить в силе простейшие законы делимости для целых алгебраических чисел, когда мы, например, вводим общий идеальный делитель чисел

2 и (1 + sqrt(-5)),

хотя в действительности таковой не существует; точно так же и здесь к конечным высказываниям мы должны присоединить идеальные высказывания для того, чтобы удержать формально простые законы обычной аристотелевой логики. И странным образом случилось так, что определения и выводы, против которых Кронекер с такой страстью возражал, оказались точной копией того, что тот же Кронекер с таким энтузиазмом превозносил в теории чисел у Куммера и чем он восхищался как высшим математическим достижением.

Как же мы теперь придём к идеальному высказыванию? Замечательно и, во всяком случае, благоприятно и покровительствует нам следующее обстоятельство. Для того, чтобы попасть на путь к этим идеальным высказываниям, мы должны лишь естественным и последовательным образом продолжить то развитие основ математики, которое имело место уже до сих пор. Действительно, припомним, что даже элементарная математика уже не остаётся на точке зрения наглядной теории чисел. Содержательно наглядная теория чисел, как мы её до сих пор понимали, не включает в себя метод алгебраического буквенного исчисления. В ней формулы всегда употребляются только для сообщения; буквы означают числовые знаки, и с помощью равенства мы сообщаем о совпадении двух знаков. Напротив того, в алгебре мы пользуемся буквенными выражениями как образами, которые сами по себе самостоятельны, и благодаря им содержательные теоремы теории чисел принимают формальный характер. На место высказываний о числовых знаках выступают формулы, которые, со своей стороны, являются конкретными объектами наглядного созерцания, а на место содержательного теоретико-числового доказательства выступает вывод одной формулы из другой по известным правилам.

Таким образом, уже в алгебре имеет место увеличение числа конечных объектов. До сих пор это были только числовые знаки, как, например, 1, 11, 11111. Только они служили объектами содержательного рассмотрения. Но уже в алгебре математическая практика выходит за эти пределы. Даже когда некоторое высказывание с нашей конечной точки зрения ещё допустимо в связи со ссылками на содержательное, как, например, теорема о том, что

a + b = b + a,

где а и b означают некоторые числовые знаки, — даже тогда мы пользуемся не этой формой сообщения, а формулой

a + b = b + a,

которая теперь уже отнюдь не является непосредственным сообщением о чём-то содержательном, а некоторым формальным образом, отношение которого к старым конечным высказываниям

2 + 3 = 3 + 2,

5 + 7 = 7 + 5

состоит в том, что мы в эту формулу вместо а, b подставляем числовые знаки 2, 3, 5, 7 и благодаря этому, т. е. благодаря некоторому — хотя и очень простому — способу доказательства, получаем конечные частные высказывания. Итак, мы приходим к тому взгляду, что а, b, =, +, равно как и вся формула целиком,

а + b = b + а

никакого значения сами по себе не имеют, точно так же, как и числовые знаки; однако из неё можно получить формулы, которым мы приписываем значение, именно тем, что мы их понимаем как сообщение конечных высказываний. Если мы этот взгляд обобщим, то математика сведётся к совокупности формул, во-первых, таких, которым соответствуют содержательные сообщения конечных высказываний, т. е. по существу числовых равенств или неравенств, и во-вторых, других формул, которые сами по себе никакого значения не имеют и которые являются идеальными образами нашей теории.

Какова же была наша цель? В математике мы нашли, с одной стороны, такие конечные высказывания, которые содержат только числовые знаки, как-то:

3 > 2, 2 + 3 = 3 + 2, 2 = 3,  1 ≠ 1;

эти высказывания, если исходить из нашей конечной точки зрения, оказываются непосредственно наглядными и без дальнейшего понятными; их можно отрицать, они верны или ложны, можно свободно, не задумываясь, распоряжаться ими согласно логике Аристотеля; закон противоречия для них имеет место, т. е. какое-либо высказывание этого рода и его отрицание не могут оба быть верны; имеет место закон исключённого третьего, т. е. одно из двух — либо данное высказывание верно, либо верно его отрицание. Когда я говорю: «некоторое высказывание ложно», то это равносильно утверждению: «отрицание этого высказывания верно». Кроме этих элементарных высказываний совершенно непроблематического характера, мы встречали также конечные высказывания проблематического характера, например, такие, которые были неразделимы. Наконец, мы ввели  идеальные высказывания, которые должны способствовать тому, чтобы в совокупности опять-таки имели место обычные законы логики. Но так как идеальные высказывания, именно формулы, сами по себе не имеют значения, поскольку они не выражают конечных утверждений, то логические операции над ними не могут производиться содержательно, как над  конечными  высказываниями. В таком случае сами логические операции и математические доказательства необходимо формализовать; это требует перевода логических соотношений на язык формул. Поэтому мы должны будем к математическим знакам прибавить ещё и логические знаки, например:

& (и), V (или; либо), --> (если, то), ! (неверно)

и пользоваться кроме математических переменных а, b, с, ... ещё и логическими переменными, т. е. переменными высказываниями A, В, С, ...

Как это может произойти? К счастью для нас, здесь оказывается та же предустановленная гармония, которую мы так часто встречаем в истории развития науки — которая пригодилась Эйнштейну, когда он для своей гравитационной теории нашёл вполне разработанное общее исчисление инвариантов: в качестве такой успешно разрабатывавшейся предварительной теории мы находим алгоритм логики. Правда, этот последний возник первоначально из совершенно других отправных точек зрения, и в соответствии с этим знаки логического исчисления первоначально были введены тоже только для сообщений; но будет последовательным, если мы теперь отвергнем значение логических знаков, как мы отвергли значение знаков математических, и объявим, что формулы логического исчисления сами по себе не имеют никакого значения и суть идеальные высказывания. В логическом исчислении мы обладаем языком  знаков,  которым  можно математические теоремы выразить с помощью формул, а логические умозаключения выразить с помощью формального процесса. Аналогично тому, как мы это делали при переходе от содержательной теории чисел к формальной алгебре, мы и в логическом исчислении рассматриваем знаки и символы операций, отвлекаясь от их содержательного  значения. Благодаря этому, мы вместо содержательной математической науки, которую мы передаём обыкновенным языком, получаем некоторую совокупность формул с математическими и логическими знаками, следующих друг за другом по определённым правилам. Математическим аксиомам соответствуют некоторые определённые формулы, а содержательным выводам соответствуют правила, по которым формулы следуют одна за другой: таким образом, содержательные выводы подменяются внешними действиями согласно правилам. Тем самым совершается строгий переход от наивного к формальному обращению, с одной стороны, с самими аксиомами, которые сначала наивно считались основными истинами и которые уже давно в сов