О чем говорят цифры. Как понимать и использовать данные — страница 21 из 40

В компании IHG работают несколько групп аналитиков. Дэвид Шмитт возглавляет одну из них – в отделе стратегии и планирования. Ее задачи – оперативно информировать топ-менеджеров о том, каковы текущие дела компании. Иначе говоря, группа ориентирована на оформление всевозможных отчетов. Ее сотрудникам важно привлекать как можно больше внимания к полученным результатам и стимулировать к принятию решений на их основе. Для этого в их распоряжении целый ряд инструментов, в зависимости от особенностей аудитории. Один из них – создание «музыкальных клипов»: пятиминутных видеороликов, обосновывающих полученные результаты с помощью картинок, аудиоклипов и видео. За показом такого клипа, как правило, идет устный рассказ с необходимой дополнительной информацией.

Например, не так давно группа Шмитта создала видеоклип с описанием того, какие предпосылки определяют прогнозы покупательского спроса летом. Видео получило название «Путешествие по дорогам лета». В нем автомобиль ехал по дороге мимо дорожных знаков «Внимание! Впереди пик спроса!» и билбордов со статистическими данными[56]. Целью создания видеоклипа было привлечь внимание к основным факторам операционной деятельности в приближающемся летнем сезоне и их особенностям в разных регионах страны. Как отмечает Шмитт, «данные не самоцель и цифры не самоцель, главное – это идея, которая за ними стоит». Если основную идею удалось довести до сознания слушателей, то Шмитт может переключиться на более традиционные формы презентации. Но он надеется, что благодаря видеоклипу аудитория уже сформировала мнение о теме доклада.

Еще один способ донести до аудитории результаты анализа и объяснить суть аналитических моделей – это ролевые и имитационные игры. Их часто применяют для иллюстрации взаимодействия переменных в сложных моделях. Например, «Пивная игра» – симуляция, основанная на модели сбыта продукции пивоваренной компании, – была разработана в MIT в 1960-х годах. Тысячи компаний и студентов на ее примере учились организовывать сбытовую сеть и постигали такие принципы, как «эффект хлыста»: колебание объема заказов по причине неполной информации об участниках сбытовой цепочки. Другие компании приступают к разработке собственных обучающих игр для решения конкретных задач. Занимающаяся грузовыми перевозками компания Schneider National разработала имитационную игру, чтобы убедить персонал в важности аналитического мышления в управлении грузовиками и трейлерами. Цель игры – минимизировать простаивание машин и переменные издержки при заданном объеме выручки. Решения о том, принимать ли груз или допустить холостой пробег грузовика, участники принимают, имея в распоряжении вспомогательную аналитику. Шнейдер использует игру, чтобы сообщить сотрудникам, каковы текущие результаты деятельности, и поменять психологию «исполнителей заказов» на позицию «получателей прибыли». Некоторые клиенты компании Шнейдера тоже участвовали в этой игре.

Компании используют современные технологии, чтобы дать возможность тем, кто принимает решения, непосредственно работать с данными. Например, Deloitte Consulting создала для iPad виртуальную симуляцию для сотрудников аэропорта: выполняемых ими рабочих операций и отчетов. В ней используется программа Google-карты, в которой можно отметить те аэропорты, где может совершить посадку определенный самолет. Разным цветом самолетов показывается неэффективность (красный) или эффективность (зеленый) работы аэропорта. Щелкнув по символу того или иного аэропорта на карте, можно получить финансовые и операционные данные о результатах его работы. Интерфейс содержит пиктограммы, означающие численность персонала, уровень обслуживания пассажиров, финансовые результаты, операционные проблемы и пр. Это приложение – лишь один пример того, чего могут добиться современные интерактивные и удобные технологии.

Чего не найдешь в отчете

Презентации и доклады, конечно, не единственно возможные способы рассказать о результатах аналитических проектов. Чем глубже аналитики вовлечены в принятие мер по результатам анализа, тем более успешным будет проект. Например, все чаще компании «встраивают» аналитику в среду автоматизированного принятия решений[57]. В страховании, в финансовой сфере, а также в отраслях, где цены на услуги зависят от клиентов (например, в отельном бизнесе и авиаперевозках), автоматизированные процедуры принятия решений на основе аналитики получили широкое распространение. И действительно, каждый знает, как сложно заставить сотрудника страховой компании или банка заняться наконец вашей заявкой на страховку или кредит. В таких условиях аналитика будет распространяться все больше и больше, поскольку у клиента практически нет выбора (или он очень невелик; немногочисленные исключения можно оставить сотрудникам). Если вы количественный аналитик или ответственный за принятие важного решения менеджер и ваша задача – разработать и внедрить такого рода системы, то это будет намного эффективнее, чем просто подготовить отчет.

В отрасли онлайнового поиска информации существуют колоссальные базы данных, измеряемые многими петабайтами. Новая информация поступает в таких объемах и с такой скоростью, что человеческий мозг не способен справиться с ней. В таких условиях специалисты по базам данных (обычно количественные аналитики с навыками в области IT выше средних) часто являются сотрудниками отделов исследований и разработок. Их задача состоит в разработке новых потребительских свойств продуктов и опытных образцов, а отнюдь не в создании бумажных отчетов или презентаций.

Например, группа по работе с базой данных в социальной сети для профессионалов LinkedIn входит в состав отдела по разработке новых продуктов, создавшего целый ряд новых свойств и функций, которые основаны на взаимосвязях между социальными сетями и работой. Это в числе прочего «Люди, которых вы можете знать», «Рабочие места, которые могут вас заинтересовать», «Мы ищем таланты», интерактивная визуальная презентация профессионального сообщества InMaps «Группы, которые могут вас заинтересовать». Некоторые из этих функций (в частности, «Люди, которых вы можете знать») в огромной степени повлияли на рост и стабильность клиентской базы LinkedIn.

Если вы или количественные аналитики в вашей организации занимаетесь преимущественно внутренними процессами и проблемами, то и в этом случае результатом анализа вовсе не обязательно будет лишь отчет или презентация. Ведь конечная цель в том, чтобы повысить эффективность внутреннего бизнес-процесса или управленческого решения. А это значит, что вы или ваш количественный аналитик должны принимать самое активное участие не только в обосновании, но и практической реализации результатов анализа.

Том провел небольшое исследование того, каким образом несколько лет назад компании усовершенствовали 57 управленческих решений, и выяснил, что именно аналитика чаще всего упоминалась в качестве фактора, позволившего добиться успеха[58]. На втором месте по частоте упоминаний оказались «изменения в корпоративной культуре и лидерстве», на третьем – «более качественные данные» и на четвертом «реорганизация бизнес-процессов». В среднем представители опрошенных компаний называли пять и более различных факторов, благодаря которым удалось добиться обоснованных решений. Это означает, что аналитикам приходится быть больше чем аналитиками. Они становятся консультантами по преобразованиям в бизнесе.

Когда результаты не влекут за собой действий

Мы ожидаем, что по результатам количественного анализа будут приняты какие-то меры, но иногда даже отличные результаты анализа не влекут за собой соответствующих действий (хотя знать их все равно полезно). Например, Джин Хо как-то принимал участие в исследовании преимуществ первого шага в игре го. Это одна из старейших игр-стратегий в мире. В игре простые элементы (черные линии, черные и белые чечевицеобразные фишки, или «камни») и столь же простые правила. Но, несмотря на очевидную простоту, в игре масса тонкостей, которые тысячелетиями захватывают игроков[59].

В Азии, особенно в Корее, Японии и Китае, десятки миллионов людей увлекаются игрой го. Почти тысяча профессиональных игроков зарабатывают себе на жизнь, участвуя во всевозможных турнирах с призовыми фондами в миллионы долларов.

В начале игры доска пуста. Один игрок выбирает черные камни, а второй – белые. Черные и белые камни ставятся на доску попеременно, но у черных есть право первого хода. Это дает определенное преимущество, но никому прежде не приходило в голову попытаться оценить, насколько оно велико. С 1974 года в профессиональных состязаниях белым в начале игры дается фора в 5,5 очка в качестве компенсации за право первого хода черных. Эта фора называется коми.

Чтобы понять, насколько компенсация адекватна, Джин Хо проанализировал данные о 577 профессиональных матчах, проводившихся в Корее. Результаты анализа позволяют предположить, что в действительности этой компенсации мало. Однако в процессе анализа возникла одна проблема. Данные позволяли утверждать, что право первого хода становится преимуществом только для опытного игрока, способного им воспользоваться. Теоретически на этом основании было бы вполне оправданно диверсифицировать размер коми, то есть для тех игроков, у которых фора, как правило, не становилась решающим фактором выигрыша, оставить ее размер 5,5, а для всех остальных увеличить. Но в профессиональных турнирах на это вряд ли пойдут. Таким образом, оригинальный анализ (позволивший Джин Хо и его коллеге опубликовать прекрасную статью в академическом журнале) не привел ни к каким конкретным действиям[60].

Подведем итоги

Итак, мы описали каждый из шести шагов и трех этапов модели количественного анализа. Если вам удастся на практике осуществить все действия, описанные в главах