О чем говорят цифры. Как понимать и использовать данные — страница 36 из 40

• иметь четкое представление о времени и средствах, необходимых для выработки решения, и достичь согласия с коллегами по этому вопросу;

• в достаточной степени изучить математику и статистику, чтобы в общих чертах понимать принцип работы модели и возможные причины того, что она неадекватна реальной ситуации;

• вежливо, но твердо требовать объяснить вещи, которые вам непонятны;

• посещать все брифинги, совещания и демонстрации, имеющие отношение к аналитике;

• проинформировать сотрудников о том, что эффективное использование модели необходимо как для успеха компании, так и для их собственного успеха.

Изучить основы математики и статистики

В главе 6 мы предложили несколько способов изучения основ статистики людьми, принимающими решения. Мы считаем, что это непременная обязанность менеджеров любого уровня, включая топ-менеджеров. Почему? В нашем насыщенном информацией обществе и деловой культуре просто невозможно представить применение данных и аналитики для решения управленческих проблем без достаточно сложного математического инструментария.

Те менеджеры, которым недостает математической подготовки, легко могут попасть в неприятные ситуации, что наглядно подтверждает пример Джо Кассано из AIG Financial Products, приведенный в главе 1. Многие компании все в большей степени используют статистические и математические модели для ведения бизнеса. Отсюда логически следует вывод о том, что менеджер, не понимающий принципов построения математических моделей, не может успешно внедрить их в практику. Как говорит выпускник Йельского университета Роберт Шиллер (обосновывая причины финансового кризиса 2008–2009 годов, который ему удалось предсказать), «если вы руководите компанией, то должны уметь обращаться с цифрами. Количественная информация действительно имеет значение»[109].

Некоторые компании настаивают на том, чтобы их менеджеры имели базовые знания в математике и построении моделей. Например, генеральный директор TD Bank Group Эд Кларк, получивший степень по экономике в Гарвардской школе бизнеса, сумел избежать многих проблем, с которыми столкнулись другие американские банки в период финансового кризиса. Он так описывал эти проблемы в интервью газете Toronto Star: «Общаясь с коллегами по сфере операций со структурированными финансовыми продуктами, я столкнулся с весьма опасным фактом: они просто не понимали сути этих инструментов. Им никогда не приходило в голову самостоятельно провести математические расчеты, положенные в основу каждого такого продукта. Отчасти это следствие того, что они делегировали их разработку и понимание на слишком низкие уровни организационной иерархии»[110].

По мере того как во всех отраслях находят все более широкое применение аналитика и базы данных, топ-менеджерам вменяется в обязанность овладеть более или менее сложными аналитическими приемами. Иначе они просто не смогут вмешаться, когда какой-нибудь трейдер ввяжется в операции, связанные с чрезмерным и неосознаваемым риском, или когда маркетолог предложит предсказательную модель, требующую сбора слишком большого объема аналитических данных. В результате их компании и потребители оказываются в весьма опасном положении.

В частности, топ-менеджеры должны разбираться в таких концепциях:

• показатели общей тенденции (среднее значение, мода, медиана);

• вероятности и распределение;

• выборка;

• основы корреляционного и регрессионного анализа;

• основы постановки экспериментов;

• интерпретация визуальной аналитики.


Топ-менеджеры могут освоить эти концепции теми же способами, что и их подчиненные; кроме того, топ-менеджеры располагают достаточными средствами для того, чтобы пригласить профессоров или консультантов провести занятия для группы старших менеджеров или даже индивидуальные.

Понимание и тестирование исходных предположений

Мы уже приводили знаменитое высказывание статистика Джорджа Бокса: «Все модели некорректны, но некоторые при этом полезны». Тогда же мы заметили, что очень важно уловить тот момент, когда некорректная модель перестает быть полезной. Чаще всего это происходит тогда, когда заложенные в модель исходные предположения оказываются неверными или недействующими. Мир постоянно меняется, и обязанность скептически настроенного топ-менеджера в том, чтобы определить, не привели ли эти изменения к недостоверности модели. Далее приведены некоторые примеры исходных предположений для количественных моделей, на практике используемых организациями.

• Готовность покупателя купить продукт по определенной цене (известной под названием модели эластичности цены) не изменилась, хотя общеэкономические условия ухудшаются.

• Предпочтения покупателей сегодня не отличаются от таковых по выборке покупателей, на которой мы тестировали различные версии дизайна веб-страниц несколько лет назад.

• Разработанная нами предсказательная модель вероятности банкротства ипотечных банков в период роста цен на недвижимость продолжает действовать и в период снижения цен (видимо, это несколько проблематично).

• Вероятность мощного урагана в Южной Флориде не исчезла, несмотря на то что, похоже, постепенно происходят глобальные климатические изменения на планете.

• Формирование выборки приверженцев политического деятеля из владельцев стационарных телефонных номеров по-прежнему удовлетворяет требованиям репрезентативности, несмотря на то что многие избиратели не имеют стационарных телефонов (как мы и предполагали, это тоже проблематично).


Не все из этих исходных предположений оказались необоснованными. По сути, поскольку практически все модели разрабатываются на основе данных за прошлые периоды (как мы помним, получить надежные данные о будущем трудно), они по умолчанию базируются на том предположении, что будущее в основных чертах будет повторять прошлое. Такие модели часто оказываются адекватными в долговременной перспективе. Как отметил Чарльз Дахигг в книге The Power of Habit: Why We Do What We Do in Life and Business[111], установившись, поведение человека остается на удивление постоянным в течение долгого времени. Это позволяет нам предсказывать будущее на основе информации о прошлом.

Некоторые организации платят немалые деньги талантливым прогнозистам только за тестирование исходных предположений. Взять, к примеру, Ларри Саммерса. Бывший консультант по экономике в администрации Клинтона и Обамы, экс-президент Гарвардского университета работал в качестве консультанта хеджевого фонда D.E. Shaw. Том встретился с Саммерсом на каком-то общественном мероприятии и поинтересовался его функциями в этом фонде. Тот ответил: «Я прихожу на работу раз в неделю и брожу по кабинетам квантов, разрабатывающих математические модели торговли ценными бумагами. Я задаю им вопросы относительно исходных предположений, лежащих в основе этих моделей, а также ситуаций, когда они могут оказаться нерелевантными. Вы удивитесь, если узнаете, как часто мне не могут дать внятного ответа». Говорят, за эту работу Саммерс получал пять миллионов долларов в год, так что, надо думать, руководство фонда считало ее важной.

Вы тоже можете последовать примеру Саммерса. Если кто-то представляет математическую модель, весьма умно с вашей стороны было бы поинтересоваться, на каких исходных предположениях она основана и при каких условиях выдаст недостоверные результаты. Если ответ перегружен математической терминологией, попытайтесь еще раз поставить вопрос о том, что должно измениться в мире, чтобы модель утратила адекватность.

Не стесняйтесь переспрашивать

Последнюю мысль предыдущего пункта можно сформулировать несколько иначе: очень важно попросить о дополнительных объяснениях, если что-то непонятно. Особенно важно просить дополнительных объяснений, если вместо данных и анализа вам предлагается чье-то мнение или истории из жизни. Как говорит СEO Caesars Entertainment Гэри Лавмен, «я не обязан получить сто процентов ответов, но моя работа состоит в том, чтобы задавать массу неприятных, глубоких, а иногда почти оскорбительных вопросов, поскольку они являются частью аналитического процесса, приводящего к точному и глубокому знанию»[112].

Чтобы стимулировать собеседника к использованию аналитики, можно поставить такие вопросы:

• Вы помните ваши данные?

• Как вы думаете, можно ли протестировать эту гипотезу с помощью конкретных данных?

• Задумывались ли вы над возможностью эмпирического анализа этой идеи?

• У нас примерно… покупателей. Проверяли ли вы вашу идею хотя бы на ком-то из них?

• Может быть, вам стоит рассмотреть возможность проведения небольшого, но научно строгого эксперимента для проверки этой концепции?


Думаем, вам понятна основная идея. Если в организации найдется достаточно людей, постоянно задающих такие вопросы, корпоративная культура быстро и существенно изменится к лучшему.

Количественные аналитики зачастую пытаются описывать модели и проблемы на математическом жаргоне. Это не значит, что вам остается только молча слушать или самим осваивать их терминологию. В качестве удачной иллюстрации этого тезиса можно привести фильм «Предел риска», где рассказывается о драматических событиях, приведших к финансовому кризису 2008–2009 годов. Место действия – инвестиционный банк, весьма напоминающий Lehman Brothers. Главный герой – специалист по двигателестроению и техническим наукам. Он разработал новую методику оценки кредитного риска и демонстрирует ее директору отдела торговых операций банка (его играет Кевин Спейси). Этот некоронованный король кредитования заявляет: «Вы же знаете, что я ничего в этих формулах не понимаю. Объясните простым английским языком, что это означает»