Человеческий язык имеет сложную структуру: звуки образуют приставки, корни, суффиксы, называемые морфемами, из них в свою очередь составляются слова, а из слов предложения, число которых практически бесконечно. Прежде считалось: сигналы животных не разделимы на составные элементы. Однако исследования последних лет показали, что и коммуникативные системы некоторых видов животных имеют «ступенчатое» строение, разумеется, гораздо более простое. Животные способны строить достаточно сложные сообщения, комбинируя элементарные единицы, и в их языке есть «синтаксис».
В простейшем виде комбинирование представляет собой перестановку в различном порядке различных элементов, что приводит к изменению значения сигнала. Но изменения смысла сигнала можно добиться и просто меняя количество совершенно одинаковых элементов в сигнале. В зависимости от того, сколько раз издает гусь сигнал «га», характер передаваемой информации становится иным. Если в гусином гоготании больше шести слогов, сообщение можно перевести приблизительно так: «Еды много, давайте останемся здесь». Сигнал «га-га-га-га-га-га» означает, что травы мало и вряд ли есть смысл задерживаться в этом месте. Пять слогов содержат совсем уже другую информацию — «Надо прибавить шагу», четыре — «Полный ход!», а три — «Беги со всех ног. Наверное, придется взлетать.»
Песни перепелов, кукушек, тетеревов представляют собой сигналы, состоящие из одного, двух слогов или серий однообразных по своему характеру звуков. Песни же воробьиных птиц по рисунку далеки от простоты, они образуются из элементов, которые различаются по длительности, амплитуде, частоте. Наименьшей неделимой «единицей» песни является нота. Ноты объединяются в слоги, а слоги — в мотивы или фразы. У теньковки песня может состоять из 24 элементов, у веснички из 18; зарянки используют 250 различных нот и 2300 мотивов.
Песня относится и к наиболее длительным сигналам. У каменки и короткопалой пищухи она звучит секунду, у щегла, пеночки-трещетки — несколько секунд, у камышевки, пеночек-пересмешек и дроздов — несколько минут.
Каждый из звуков воробьиных очень часто служит для передачи нескольких значений. Количество их порой достигает 15. В зависимости от ситуации зяблик использует одни и те же строфы своей песни для маркировки территории, как сигнал угрозы, сигнал спаривания, стайный сигнал…
Песни некоторых воробьиных птиц достигают большой степени сложности. В них комбинируются простые сигналы и сигналы более высокого ранга, составленные из простых, причем комбинирование осуществляется по определенным правилам. В результате за счет перестановки мотивов и нот птица одновременно передает несколько сообщений.
И еще немаловажный аспект проблемы, который возникает, когда начинают сравнивать язык животных и нашу речь. Человеческая речь, как известно, является «открытой» системой, она все время обогащается новыми элементами, созданными путем комбинаций из акустических элементов. Поэтому-то ребенок должен выучивать кодовые значения языка, научиться понимать и произносить их. А язык животных? Он представляет собой «закрытую», генетически фиксированную систему, которая состоит из определенного для каждого вида ограниченного количества сигналов. Но, говоря так, не исказим ли мы действительность? Нет. Все абсолютно верно по отношению к большинству животных. Голуби или куры, общаясь друг с другом, используют сигналы, число которых и закодированный в них смысл точно передается из поколения в поколение. Сигналы этих птиц жестко связаны с ситуацией: у кур может звучать сигнал воздушной тревоги, сигнал наземной тревоги и т. д.
Детеныш одногорбого верблюда начинает издавать звуки еще во время рождения. Не пройдет и часа с момента его появления на свет, как он уже может воспроизвести почти все сигналы, свойственные его виду. Однако подобным образом обстоит дело не у всех животных, не все они рождаются, зная сигналы, с которыми потом обращаются друг к другу. Некоторые они должны научиться произносить. Есть сигналы, смысл которых тоже усваивается в детстве (подробнее об этом будет сказано в последующих разделах). Кроме того, многие птицы способны всю жизнь заучивать разные звуки, которые, будучи подкреплены той или иной желательной или нежелательной ситуацией, очень быстро приобретают сигнальное значение. Вороны и малабарские дрозды, живущие вместе, прекрасно разбираются в сигналах друг друга. Когда из клетки удаляют одну птицу, другая начинает выкрикивать призывные звуки из ее «словаря».
Птицы способны усваивать и в дальнейшем оперировать и словами человеческого языка. Что у воронов развито подражание различным звукам — известно давно. Однако они могут не только произносить слова и фразы, но и использовать их при своем общении. У немецкого ученого Э. Гвиннера жил ворон, которого, прежде чем накормить, подзывали, говоря: «komm» (иди сюда). Когда ворон начал ухаживать за самкой, чтобы подозвать ее к лакомому куску, он вместо положенного для подобной ситуации специального крика говорил ей: «komm». Такое обращение стало возможно потому, что слово это ассоциировалось у ворона с получением корма и приобрело для него конкретное значение. Другой ворон умел говорить «komm, Dora, komm» и свистеть. Пока он сидел вместе с самкой, она никаких слов не произносила. Но едва самец вылетал из клетки, самка кричала: «komm», а самец в ответ свистел и говорил: «komm, Dora». Как только самец возвращался, самка прекращала издавать призывные крики.
Вне всякого сомнения, заученные чужие сигналы позволяют расширить объем «словаря». Однако самая сложная система голосового общения не у птиц, а у высших приматов и дельфинов.
Роль звука в жизни дельфинов трудно переоценить. С помощью его животные получают информацию об окружающей среде, передают друг другу полученные сведения. Обмениваясь сигналами, два дельфина очень часто ведут «разговор», как и подобает, соблюдая очередность: пока один свистит, второй молчит. Но дельфины умеют не только свистеть. Они могут издавать щелчки, звонкие удары, похожие на звук барабана, длительные удары, треск, состоящий из коротких импульсов, рык и вой. В одном из экспериментов, проведенном В. И. Марковым, В. А. Тарчевской и В. М. Островской, все эти сигналы решено было рассматривать как исходные элементы. Записав звуки, используемые дельфинами при общении, ученые еще раз хотели проверить, насколько сложен их язык. Они хотели получить подтверждение, что издаваемые животными сигналы построены на основе так называемого иерархического комбинирования: когда из более простых элементов образуются сигналы второго ранга, из которых, в свою очередь, получаются сигналы третьего ранга и т. д.
Иерархические системы — самые сложные в мире животных. Они известны только у некоторых человекообразных обезьян и дельфинов. Благодаря иерархическому комбинированию возможна передача очень большого объема информации. Оно позволяет создать обширный «словарь».
Эксперимент показал, что дельфины при общении широко пользуются сложнейшими сигналами. В одной из ситуаций было записано на магнитную ленту 138 сигналов, из них 86 оказались сложными. Большинство было построено из двух — пяти элементов, но были и такие, которые состояли из 24 элементов. Анализ структуры «слов» дельфинов позволил сделать интересные выводы: каждый сигнал представляет собой объединение нескольких крупных блоков. Блок может быть образован из двух элементов, которые встречаются и в виде самостоятельных сигналов. Но и сам блок бывает самостоятельным и входит в состав следующего блока, а тот, в свою очередь, является структурной единицей еще более сложного сигнала. Сколько всего уровней комбинирования в сигналах дельфинов, пока точно неизвестно. Специалисты предполагают, что их не меньше пяти.
Признавая существование формально «открытой» коммуникативной системы у дельфинов, ученые сейчас воздерживаются от оценок ее смысловой сложности. Предстоит еще разобраться в значении многих сигналов, в правилах кодирования информации в них, в синтаксисе и во многом другом.
От чего зависит разговорчивость!
От многого. Прежде всего — от уровня развития центральной нервной системы, а также от того, насколько совершенны в данной группе животного мира структуры, участвующие в образовании звуков, и слух. Огромное значение имеет и степень сложности взаимоотношений между животными.
Системы коммуникации возникают в процессе эволюции тогда, когда появляются простейшие формы группового поведения.
Верховна, хамса, сельдь живут в стаях. Сообщества их примитивны, и они обладают наименьшим запасом «слов» среди изученных сейчас рыб. Сигналов, которые бы регулировали отношения внутри стай, у них нет. Да и зачем они им? Рыбы, составляющие такие стаи, как правило, имеют одинаковые размеры, и вся стая представляет единое целое, где все равноправны. Судить об этом можно по отсутствию сигналов соперничества. Единственные сигналы, которыми пользуются типично стайные рыбы, — это звуки, сопутствующие питанию и движению. Согласованности же поведения они добиваются в основном за счет зрения.
Но вот другой пример — сообщества, в которые объединяются ласкири, гуппи, меченосцы, ласточки. Они состоят из группировок, во главе которых часто есть вожаки. Стаи эти живут на определенной территории, группы держатся друг от друга на том или ином расстоянии, по размерам рыбы разные, и между ними часто возникают антагонистические отношения. «Словарь» их более обширен: они издают сигналы соперничества и сигналы, которые звучат во время нереста. А это значит, что в подобных стаях существует соподчинение.
Еще сложнее отношения у так называемых «парных» рыб, строящих гнезда. Самцы их должны найти самок и обратить их внимание на себя. Нередко они бывают вынуждены вступать из-за самок в бой с соперниками. Самцам приходится и строить гнезда, и добиваться, чтобы самки отложили икру, а потом они охраняют гнездо от врагов, заботятся о детях. Сообщества парных рыб — наиболее развитые. У них самый большой запас «слов»: кроме остальных, свойственных и другим рыбам звуков, у них разнообразнее набор сигналов, издаваемых во время нереста. Появляются сигналы, связанные со взаимоотношениями взрослых особей и потомства.