Сделав такое предположение, Галилей мог уже теоретически вывести законы свободного падения тел.
Из постоянства ускорения следовало, что под действием силы тяжести скорость падающего тела возрастает пропорционально времени. А вычислив среднюю скорость, легко найти и пройденное телом расстояние.
Сделав эти выводы, Галилей писал в «Диалоге»: «Вы должны уже знать, что тяжелое тело, падая и приобретая все новую скорость… обладает в любом месте на линии своего движения такой степенью скорости, что если бы оно продолжало двигаться далее равномерно, не увеличивая более скорости, то за промежуток времени, равный тому, какой оно потратило на падение, оно прошло бы пространство, вдвое большее против пройденного»[6].
Галилей вывел законы свободного падения, предположив, что это — равномерно ускоренное движение.
Но таково ли оно в действительности?
Подтвердить предположение Галилея и справедливость его законов мог только опыт.
Проверка опытом законов падения
Как же можно было проверить законы Галилея на опыте? Нельзя же заметить, какое расстояние пролетает свободно падающее тело в первую, вторую, третью и так далее секунду. С большим трудом, и не очень точно, можно было, пожалуй, лишь установить время, в течение которого падающее тело проходит расстояние от вершины башни до земли.
Галилей избрал, однако, другой путь для проверки теоретически найденных им законов. Он прибег к помощи наклонной плоскости.
Шарик скатывается по наклонной плоскости под действием силы тяжести. Значит, свободное скатывание шарика по наклонной плоскости должно происходить по тем же законам, как и свободное падение. Скорость же скатывания можно сколько угодно уменьшить, изменяя угол наклона плоскости.
Пуская шарик по наклонной плоскости, можно было измерить время, необходимое шарику, чтобы скатиться до ее основания. Длина наклонной плоскости известна. Значит, можно было вычислить, каково ускорение скатывания по наклонной плоскости.
Для опытов Галилей взял доску длиной двенадцать локтей, конец которой был приподнят только на один-два локтя. Посередине доски был простроган узкий желоб, выстланный очень гладким пергаментом для уменьшения трения. По желобу скатывались бронзовые шарики, пускавшиеся Галилеем. Время измерялось водяными часами, то-есть по количеству воды, успевавшей вытечь из верхнего сосуда в нижний.
Сперва шарик был пущен с верхнего конца желоба. Когда он докатился вниз, Галилей заметил по водяным часам, сколько понадобилось ему на это времени.
По закону, выведенному теоретически Галилеем, расстояние, пройденное свободно падающим телом, увеличивается пропорционально квадрату времени. Следовательно, в четыре раза более короткий путь шарик должен пройти во вдвое более короткий промежуток времени. Пустив шарик с верхнего конца четвертой части длины желоба, Галилей убедился, что для этого расстояния шарику действительно понадобилось только вдвое меньше времени.
Опыт Галилея со скатыванием шариков по наклонной плоскости.
Так было доказано, что скатывание по наклонной плоскости подчиняется закону, выведенному для свободного падения. Значит, предположение Галилея, что ускорение свободного падения постоянно, справедливо.
Пользуясь наклонной плоскостью, можно было определить ускорение скатывания по ней. Для этого достаточно только заметить время, в течение которого шарик проходит всю ее длину.
Галилей хотел из этого опыта определить ускорение свободного падения. Он не знал, что вращение шарика очень усложняет эту задачу, которая могла быть решена таким путем только после открытия законов вращения тел.
Вот если бы можно было осуществить опыт скольжения тела без трения по наклонной плоскости, то такая задача не представила бы затруднений.
Допустим, что тело, скользящее по наклонной плоскости, прошло длину ее l за t секунд. Тогда l = at2/2, где a — ускорение скольжения.
Из закона наклонной плоскости следует, что сила, действующая вдоль нее, во столько раз меньше силы тяжести, во сколько высота ее меньше длины. Поэтому ускорение свободного падения легко было бы определить, зная ускорение скользящего тела.
Галилей изучал движение падающего тела кинематически, то-есть только с геометрической стороны. Он не принимал во внимание силы тяжести, сообщающей телам движение. Самое понятие о силе еще было неясным. Галилей часто называл причину, вызывающую движение, «импульсом» — слово, обозначающее в современной механике произведение силы на время (равное количеству движения). Но открытие кинематических законов движения падающих тел все-таки позволило Галилею решать практические задачи техники, например баллистики — науки о движении пушечных ядер.
Проблема траектории брошенного тела
Открытие законов свободного падения было началом динамики. Оно позволило немедленно же разрешить давнишнюю проблему о траектории пушечного ядра, которая имела важный практический характер.
Ядро вылетает из пушки под огромным давлением расширяющихся горячих газов. По выходе из ствола оно двигалось бы по инерции равномерно и прямолинейно, если бы его не притягивала Земля. Но как только оно покинет ствол пушки, притяжение Земли заставляет его падать.
Траектория брошенного тела определяется сложением поступательного движения и свободного падения.
Понятие о независимости движений было известно еще Аристотелю, указавшему правило их сложения: совершая движение в двух различных направлениях, тело движется по диагонали параллелограмма, построенного на скоростях этих движений.
Но почему ни Аристотель, ни его последователи не решили проблему траектории брошенного тела? Этому помешало их пренебрежение опытом: сложение движений они рассматривали только как геометрическую теорему. Но они не наблюдали движений физических тел и не знали, что реальные движения в действительности именно так и слагаются. Только поэтому аристотелианцы и могли утверждать, будто бы ядро сперва летит прямолинейно в направлении выстрела, а затем падает вертикально. Ошибочность этого мнения легко было доказать, бросив камень и наблюдая его движение.
Галилей же применил кинематическое правило сложения движений к действительному движению физических тел. Так, например, описывая воображаемый опыт с шаром, который катится по горизонтальной плоскости, он говорил: «…если же плоскость конечна и расположена высоко, то тело, имеющее вес, достигнув конца плоскости, продолжает двигаться далее таким образом, что к его первоначальному, равномерному, беспрепятственному движению присоединяется другое, вызываемое силой тяжести, благодаря чему возникает сложное движение, слагающееся из равномерного горизонтального и естественно ускоренного движения».
Исходя из свойства инерции движущихся тел, Галилей утверждал, что выброшенное пушкой ядро совершает одновременно два движения: по инерции равномерное, прямолинейное и под действием тяжести равномерно-ускоренное. Он указывал, что скорость падения не зависит от поступательного движения ядра вперед.
Эта мысль была совершенно нова и неожиданна для механиков начала XVII века. На пояснении ее особенно внимательно и остановился Галилей: «Не замечательная ли вещь, — говорит один из собеседников в „Диалоге“, — что в то самое малое время, какое требуется для вертикального падения на землю с высоты каких-нибудь ста локтей, ядро, силою пороха выброшенное из пушки, пройдет четыреста, тысячу, четыре тысячи, десять тысяч локтей, — так что при всех горизонтально направленных выстрелах останется в воздухе одинаковое время».
Можно считать, что в каждый очень короткий промежуток времени ядро движется по диагонали прямоугольника, построенного на. скоростях равномерного движения по горизонтали и ускоренного движения по вертикали.
Разобьем все время, прошедшее от момента вылета ядра из пушки до падения его на землю, на большое число очень коротких равных промежутков.
В течение каждого такого промежутка времени ядро проходит по горизонтали одно и то же расстояние. По вертикали же пройденные расстояния возрастают, как натуральный ряд нечетных чисел.
В каждый промежуток времени ядро движется по диагонали прямоугольников, построенных на скоростях движения по горизонтали и по вертикали.
Если промежутки времени очень малы, то диагонали совпадают с плавной кривой линией, загибающейся вниз, к земле. Не ограничиваясь этим выводом, Галилей доказал, что траектория ядра — парабола.
После этого не осталось сомнений, что нельзя направлять ствол орудия прямо на цель. Для попадания в далекий предмет нужно стрелять наклонно вверх. Для разных расстояний этот угол различен.
Нетрудно построить и траекторию ядра, откладывая по направлению его движения скорость, а по вертикали — пройденные расстояния в свободном падении в первую, вторую, третью и так далее секунды. Она будет всегда параболой с ветвями различной длины. Только при выстреле под углом в 45° к горизонту, если бы не было сопротивления воздуха, ядро описало бы равнобочную параболу. В этом случае оно пролетело бы и наибольшее расстояние.
Выброшенное из орудия ядро, двигаясь вперед, одновременно падает. Сложение этих движений определяет траекторию ядра (размеры даны в метрах).
Исследовав траекторию ядра, Галилей решил одну из важнейших проблем баллистики. После этого можно было составить таблицы для точной наводки орудий.
Галилей понимал, конечно, что выведенные им законы динамики вполне справедливы, только когда движущееся тело не встречает препятствий на своем пути. Но свободно падающие или брошенные тела движутся в воздухе, сопротивляющемся движущимся в нем телам. Поэтому свободное падение в атмосфере не может быть строго равномерно-ускоренным: по мере возрастания скорости очень быстро увеличивается и сопротивление воздуха. Ускорение постепенно уменьшается, и, достигнув определенной скорости, свободно падающее тело движется равномерно.