Если не обращать внимания на это условие при сравнении кардинальных чисел, то можно прийти к замечательным парадоксам. Следовательно, необходимо изменить определение кардинальных чисел замечанием, что закон соответствия, на котором основано это определение, должен быть предикативным.
Всякий закон соответствия основывается на двойной классификации. Необходимо классифицировать объекты двух совокупностей, которые собираются сравнивать, и обе классификации должны быть параллельными. Если, например, объекты первой совокупности распределяются по классам, которые в свою очередь подразделяются на разряды, а эти — на семейства и т. д., то то же самое должно быть сделано и с объектами второй совокупности. Каждому классу первой классификации должен соответствовать класс второй классификации и притом только один, каждому разряду — разряд и т. д. до тех пор, пока не придем к отдельным индивидуумам. И тогда будет видно, каково должно быть условие, чтобы закон соответствия был предикативным. Необходимо, чтобы две классификации, на которых основан этот закон, сами были предикативными.
Рассел опубликовал в American Journal of Mathematics, том XXX, под названием «Математическая логика, основанная на теории типов» мемуар, где он основывается на рассуждениях, вполне аналогичных предыдущим. Вспомнив несколько парадоксов, наиболее знаменитых у логиков, он ищет их происхождение и находит его вполне справедливо в некотором порочном кругу. Пришли к несуразностям потому, что рассматривали совокупности, содержащие объекты, в определение которых входит понятие самой совокупности. Пользовались непредикативным определением, смешали, говорит Рассел, слова all и any, что мы можем выразить по-французски словами tous (все) и quelconque (любой).
Таким образом, он приходит к необходимости рассмотреть то, что он называет иерархией типов. Допустим, что некоторое положение справедливо для некоторого индивида определенного класса. Под некоторым индивидом мы должны сначала понимать все индивиды этого класса, которые можно определить, не пользуясь указанным положением. Я их назову некоторыми индивидами 1-го порядка. Когда я буду утверждать, что положение применимо для всех этих индивидов, я буду этим определять положение 1-го порядка. Некоторый индивид 2-го порядка в этом случае будет такой индивид, в определении которого может войти упоминание этого положения 1-го порядка. Если я считаю положение верным относительно всех индивидов 2-го порядка, то получу положение 2-го порядка. Индивидами 3-го порядка будут те, в определение которых может входить упоминание об этом положении 2-го порядка, и т. д.
Возьмем пример Эпименида. Лжецом 1-го порядка будет тот, который лжет всегда, за исключением случая, когда он говорит: «я лжец 1-го порядка». Лжецом 2-го порядка будет тот, который лжет всегда, даже и тогда, когда говорит: «я лжец 1-го порядка», но который не лжет, говоря: «я лжец 2-го порядка», и т. д.
Таким образом, когда Эпименид скажет нам: «я лжец», мы можем его спросить: «какого порядка?» И только после того, как он ответит на этот законный вопрос, его утверждение будет иметь смысл.
Перейдем к более научному примеру и рассмотрим определение целого числа. Говорят, что свойство рекуррентно, если оно присуще нулю и если оно не может быть присущим n, не будучи присущим n + 1. Говорят, что все числа, обладающие рекуррентным свойством, образуют рекуррентный класс. В этом случае целое число по определению является числом, обладающим всеми рекуррентными свойствами, т. е. принадлежащим всем рекуррентным классам.
Можно ли из этого определения заключить, что сумма двух целых чисел является целым числом? Казалось бы, что да, так как если n — данное целое число, то числа x такие, что n + х — целое число, образует рекуррентный класс. Число x не было бы целым, если бы им не было n + х. Но определение рекуррентного класса, о котором мы только что говорили, не является предикативным, так как в это определение (которое говорит нам, что n + х должно быть целым) входит понятие целого числа, которое предполагает упоминание о всех рекуррентных классах.
Возникает необходимость прибегнуть к следующему обходному приему: назовем рекуррентными классами 1-го порядка все те, которые можно определить, не упоминая о целом, и целыми 1-го порядка — числа, принадлежащие ко всем рекуррентным классам 1-го порядка; затем назовем рекуррентными классами 2-го порядка те, которые можно определить, пользуясь понятием о целых 1-го порядка, но не пользуясь понятием целых высшего порядка; назовем целыми 2-го порядка числа, принадлежащие ко всем рекуррентным классам 2-го порядка, и т. д. Тогда мы можем доказать не то, что сумма двух целых есть целое, а что сумма двух целых порядка k есть целое порядка k–1.
Этих примеров, я думаю, достаточно, для того чтобы объяснить, что понимает Рассел под иерархией типов. Однако в таком случае возникают различные вопросы, на которых автор не остановился.
1. В этой иерархии без труда вводятся предложения 1-го, 2-го порядка и т. д. и вообще n-го порядка, где n — некоторое конечное целое число. Можно ли также рассматривать предложения порядка α, где α — порядковое трансфинитное число? Таким образом, Кёниг предложил теорию, которая не слишком отличается от теории Рассела. Он пользуется в ней специальным обозначением: объекты 1-го порядка обозначаются A(NV), объекты 2-го порядка — A(NV)2 и т. д., NV — инициалы выражения ne varietur[89]. Он без колебания вводит A(NV)α, где α трансфинитно, и при этом не определяет достаточно четко, что он под этим понимает.
2. Если ответят на первый вопрос «да», то необходимо будет объяснить, что понимают под объектом порядка ω, где ω — обыкновенная бесконечность, иными словами, первое трансфинитное порядковое число, или под объектами порядка α, где α — некоторое трансфинитное порядковое число.
3. Если же, напротив, отвечают «нет» на первый вопрос, то как можно будет обосновать на теории типов разницу между конечными и бесконечными числами, поскольку теория эта лишена смысла, если предположить, что это различие уже сделано.
4. Вообще, ответят ли на первый вопрос «да» или «нет», теория типов останется непонятной, если не предположить уже построенной теорию порядковых чисел. Каким же образом основать теорию порядковых чисел на теории типов?
Рассел вводит новую аксиому, которую называет axiom of reducibility (аксиома сводимости). Я предоставляю слово автору, так как не уверен в том, что правильно понял его мысль, «We assume, that every function is equivalent, for all its value to some predicative function of the same argument.»[90]. Но чтобы понять это утверждение, необходимо вернуться к определениям, данным в начале мемуара. Что такое функция и что такое предикативная функция? Если предложение присвоено данному объекту a, то это частное предложение; если его присваивают некоторому неопределенному предмету x, то это пропозициональная функция х. Предложение будет определенного порядка в иерархии типов, и этот порядок не будет одним и тем же, каково бы ни было x, так как он будет зависеть от порядка х. Функция будет называться предикативной, если она порядка k+1, когда x порядка k.
После этих определений смысл аксиомы все еще не очень ясен, и несколько примеров не помешают. Рассел их не дал, и я колеблюсь давать их по собственному усмотрению, так как боюсь исказить его мысль, которую я возможно не совсем точно уловил. Но даже и не уловив ее, в одном не сомневаюсь, а именно в том, что речь идет о новой аксиоме. С помощью этой аксиомы надеются доказать принцип математической индукции; что это возможно, я менее всего хотел бы отрицать, поскольку подозреваю, что эта аксиома является лишь другой формой указанного принципа.
В этом случае я не могу удержаться от того, чтобы не вспомнить всех тех, кто пытается доказать постулат Евклида, опираясь на одно из его следствий и считая это следствие очевидной истиной. Что они выиграли? Как бы ни была ясна эта истина, будет ли она более очевидной, чем сам постулат?
Итак, мы ничего не выигрываем в числе постулатов; выигрываем ли мы по крайней мере в их качестве? И что нового дает аксиома по отношению к принципу индукции?
1. Доступен ли он для более ясной и простой формулировки? Возможно, так как то, что дает Рассел, наверное, может быть усовершенствовано; но это маловероятно.
2. Является ли аксиома сводимости более общей, чем принцип индукции, в том отношении, что ее нельзя доказать, исходя из этого принципа?
3. Или же, наоборот, аксиома является, по-видимому, менее общей, чем принцип, так что не сразу замечают, что последний содержится в ней, хотя в действительности дело обстоит так?
4. Применение этой аксиомы может быть более соответствует естественным склонностям нашего ума; можно ли его[91] оправдать психологически?
Я ограничиваюсь постановкой этих вопросов; мне недостает основ для их разрешения, так как я не мог даже достичь полного понимания смысла этой аксиомы. Но хотя я не могу, основываясь на чересчур общих указаниях Рассела, рассчитывать полностью постичь этот смысл, я позволю себе по крайней мере сделать несколько предположений. Вот, например, предложение — определение целого числа: конечное целое есть число, принадлежащее всем рекуррентным классам. Это предложение само по себе не имеет смысла; оно будет его иметь, как только определят порядок рекуррентных классов, о которых идет речь. Но, к счастью, получается следующее: всякое целое 2-го порядка a fortiori (тем более) является целым 1-го порядка, так как оно будет принадлежать ко всем рекуррентным классам двух первых порядков и, следовательно, ко всем рекуррентным классам 1-го порядка; точно так же всякое целое