A, удовлетворяющем определенным условиям, они усматривают под этим объект, который удовлетворяет этим условиям, каковы бы при этом ни были слова, использованные для его окончательного определения, лишь бы их было конечное число.
Принадлежащие к другой школе, их я назову для краткости канторианцами, не желают принимать этого; человек, каким бы он ни был болтуном, никогда в своей жизни не произнесет более миллиарда слов; а тогда исключим ли мы из науки объекты, определение которых содержит миллиард и одно слово? И если мы их не исключим, то почему же мы исключим те объекты, которые могут быть определены только бесконечным числом слов, ведь построение как одних, так и других превосходит человеческие способности?
Но эти аргументы, как известно, не трогают прагматистов; как бы ни был болтлив один человек, человечество будет еще более болтливо, и так как мы не знаем, сколько времени оно будет существовать, то мы не можем заранее ограничить поле его изысканий; мы знаем только одно, что это поле будет всегда оставаться ограниченным; и даже если бы мы могли определить дату исчезновения человечества, то существуют другие звезды, которые смогут принять неоконченный труд Земли; прагматисты даже согласны без особого отвращения представить себе человечество, несравненно более болтливое, чем наше, сохраняя все-таки за ним кое-что человеческое; но они отказываются рассуждать по поводу гипотезы уж я не знаю какого божества, бесконечно болтливого и могущего мыслить бесконечное число слов в конечное время. Канторианцы же, наоборот, предполагают, что объекты существуют в своего рода большом складе, независимо от всего человечества или всякого божества, которое могло бы о них говорить или думать; в этом магазине мы, без сомнения, можем выбирать, но, наверное, мы не имеем достаточно аппетита или средств, чтобы купить все; при этом инвентарь магазина не зависит от ресурсов покупателей. Из этого-то исходного недоразумения следуют всевозможные разногласия в деталях.
Возьмем для примера теорему Цермело, по которой пространство может быть преобразовано во вполне упорядоченное множество. Канторианцы будут пленены строгостью, действительной или кажущейся, доказательства; прагматисты им ответят: «вы говорите, что можете преобразовать пространство в хорошо упорядоченное множество: хорошо! Преобразуйте». «Это будет слишком долго». «Тогда по крайней мере покажите нам, что кто-либо, имеющий достаточно времени и терпения, мог бы произвести это преобразование». «Нет, мы этого не можем, так как число операций, которые необходимо проделать, бесконечно, оно больше даже, чем алеф-нуль». «Можете ли вы показать, как можно будет выразить конечным числом слов закон, который позволил бы упорядочить пространство?» «Нет». И прагматисты заключают, что теорема лишена смысла или неверна, или по крайней мере не доказана.
Прагматисты становятся на точку зрения расширения, а канторианцы — на точку зрения выделения. Когда речь идет о конечной совокупности, это различие может интересовать только теоретиков формальной логики; но оно кажется нам гораздо более глубоким, когда речь идет о бесконечных совокупностях. Если встать на точку зрения расширения, совокупность образуется последовательными прибавлениями новых членов; мы можем, комбинируя старые объекты, создавать новые, затем с помощью этих — еще более новые, и если совокупность бесконечна, то только потому, что нет причин, чтобы остановиться.
С точки зрения выделения, наоборот, мы исходим из совокупностей, в которых находятся предсуществующие объекты, которые кажутся нам сначала неразличимыми; но мы, наконец, начинаем различать некоторые из них потому, что мы снабжаем их этикетками и распределяем по ящикам; однако объекты предшествуют этикеткам, и совокупность существовала бы даже тогда, когда не нашлось бы коллекционера для ее классификации.
Для канторианцев понятие кардинального числа не составляет тайны. Две совокупности имеют одинаковое кардинальное число, когда их можно расположить в одних и тех же ящиках; нет ничего проще этого, поскольку обе совокупности предсуществуют и поскольку точно так же можно рассматривать как предсуществующую совокупность ящиков, независимых от коллекционера, заинтересовавшегося распределением по ним объектов. Для прагматистов это не так; совокупность не предсуществует, она каждый день обогащается; новые объекты без конца прибавляются к ней так, что их нельзя было бы определить, не опираясь на понятие объектов, уже ранее классифицированных, и на способ их классификации. При каждом новом приобретении коллекционер может быть вынужденным перерыть свои ящики, чтобы найти способ пристроить его на место; никогда не будет известно, могут ли две совокупности расположиться в тех же ящиках, так как всегда можно ожидать необходимости произвести среди них перемещения. Например, прагматисты принимают только объекты, которые могут быть определены конечным числом слов. Возможные определения, выражаемые с помощью фраз, всегда могут быть перенумерованы порядковыми числами от одного до бесконечности, поэтому у них будет возможно только одно бесконечное количественное число алеф-нуль. Почему тогда, спросим мы, мощность континуума не такая же, как и мощность целых чисел? Да, когда даны все точки пространства, которые мы умели определять словами в конечном числе, мы можем представить себе закон, выражаемый также конечным числом слов, который приводит их в соответствие с последовательностью целых чисел. Но рассмотрим теперь фразы, где фигурирует формулировка этого закона соответствия; только что они не имели никакого смысла, так как этот закон еще не был изобретен, и они не могли служить для определения точек пространства; теперь они приобрели смысл, они позволяют нам определить новые точки пространства, но эти новые точки не будут уже иметь места в принятой классификации, и это заставит нас изменить ее. Это-то мы и хотим сказать, когда, следуя прагматистам, говорим, что мощность континуума не та же, что мощность целых чисел. Мы хотим сказать, что невозможно найти такой закон соответствия между этими двумя совокупностями, который был бы защищен от подобных изменений в том смысле, как это можно сделать, например, когда речь идет о прямой и плоскости. И в таком случае, собственно говоря, прагматисты не уверены в том, что некоторое множество имеет кардинальное число или же что для двух заданных множеств всегда можно узнать, имеют ли они одну и ту же мощность или одно из них имеет мощность большую, чем другое. Таким образом, они приходят к сомнению в существовании числа алеф-один.
Другой источник разногласия возникает в способе понимания определений. Существуют определения многих видов; прямое определение может быть сделано как no genus proximum et differentiam specificam[94], так и по построению.
Отметим попутно, что имеются определения, неполные в этом смысле: они определяют не один индивидуум, но сразу целый род; они законны, и именно они являются определениями, которыми чаще всего пользуются. Но, следуя прагматистам, под ними нужно дополнительно понимать совокупность индивидуумов, которые удовлетворяют определению и которые можно полностью определить конечным числом слов; для канторианцев это ограничение является искусственным и лишенным значения.
Если бы были только прямые определения, то бессилие чистой логики было бы неоспоримо. В этом случае можно было бы в любом предложении заменить каждый из его членов определением; если бы произвели такую подстановку, то или предложение не свелось бы к тождеству, и тогда оно было бы недоступно чисто логическому доказательству, или же оно свелось бы к тождеству, и тогда оно было бы не чем иным, как тавтологией, более или менее искусно замаскированной.
Но мы имеем еще другой вид определений: определения через постулат. Обычно мы будем знать, что определяемый объект принадлежит к некоторому роду, но когда дело пойдет о том, чтобы высказать специфическое различие, то его выскажут не прямо, а с помощью «постулата», которому должен удовлетворять определяемый объект. Именно таким образом математики могут определить количество x посредством явного уравнения x = f(y) или неявного F(x, y) = 0.
Определение через постулат имеет значение только тогда, когда доказано существование определяемого объекта; на языке математики это означает, что постулат не содержит противоречий; этим условием мы не имеем права пренебрегать; нужно либо предположить отсутствие противоречия как интуитивную истину, как аксиому, с помощью некоторого акта веры, но тогда нужно отдавать себе отчет в том, что делаешь, и знать, что увеличен список недоказуемых аксиом; либо же следует построить доказательство по правилам: или с помощью примера или применить рекуррентное рассуждение. Это не значит, что такое доказательство было бы менее необходимо в случае прямого определения, но оно в этом случае более просто.
Некоторые прагматисты окажутся более требовательными: чтобы рассматривать определение как законное, им недостаточно того, чтобы оно не приводило к противоречию в терминах, им еще будет нужно, чтобы оно имело смысл с той особой их точки зрения, которую я пытался определить выше.
Как бы то ни было, но останется ли логика бесполезной после введения определений через постулаты? Мы не можем при задании предложения заменить в нем некоторый член через его определение; все, что мы можем сделать, — это исключить этот член при помощи предложения и постулата, служащего ему определением. Если эта операция, сделанная, как говорят, по правилам логического исключения, не приводит нас к тождеству, то это показывает, что предложение недоказуемо посредством чистой логики; если она приводит к тождеству, то это значит, что оно только тавтология. Нам не нужно ничего изменять в наших предыдущих заключениях.
Но существует третий вид определений, который является началом нового недоразумения между прагматистами и канторианцами. Это все ещ