В то же самое время в математике имеют обыкновение понимать друг друга; и это именно благодаря тому, что я назвал проверками; они являются окончательными судьями, и перед ними склоняется всякий. Но там, где этих проверок нет, математики не проникают дальше простых философов. Когда речь идет о том, имеет ли смысл непроверяемая теорема, кто может выносить суждение, если проверять ее запрещено по определению? Остается только привести своего противника к противоречию. Но попытка была сделана и ничего не достигла.
Было отмечено много противоречий, и несогласие осталось; никто не был убежден. От противоречий всегда можно избавиться удачным приемом, а именно: distinguo[96].
Глава VIВзаимоотношения материи и эфира
Когда Абрагам просил меня заключить серию собраний, организованных французским Физическим обществом, я сперва хотел отказаться. Мне казалось, что все вопросы были полностью разобраны и что я не мог бы ничего прибавить к тому, что было так хорошо сказано. Мне ничего не оставалось, как постараться резюмировать впечатление, создавшееся под влиянием совокупности этих работ, и это впечатление такое ясное, что каждый из вас должен был его испытать в такой же степени, как и я, и я не смогу дать ему большей ясности, пытаясь выразить его словами. Но Абрагам так любезно настаивал, что я вынужден был поступиться неизбежными затруднениями, из которых наибольшим является необходимость повторять то, что каждый из вас уже давно обдумал, и наименьшим — необходимость пробежать множество различных вопросов, не имея времени на них остановиться.
Первое впечатление должно было ошеломить всех слушателей: старые механистические и атомистические гипотезы в последнее время приобрели такую прочность, что почти перестают казаться гипотезами; атомы более уже не являются удобными фикциями; нам кажется, что мы, так сказать, видим их с тех пор, как научились их считать. Гипотеза укрепляется и выигрывает в правдоподобии, когда она объясняет новые факты, но это происходит многими способами; чаще всего она должна расшириться, чтобы объяснить новые факты, и иногда она теряет в строгости при таком расширении, иногда бывает необходимо привить к ней дополнительную гипотезу, которая к ней очень подходит, которая не слишком отличается от основной гипотезы, но которая все же является чем-то посторонним, придуманным нарочно для достижения определенной цели, которая, одним словом, является выходом из положения. В этом случае нельзя сказать, что опыт подтвердил первоначальную гипотезу, но все же он ей и не противоречит. Или, еще лучше, между фактами новыми и старыми, для которых первоначально и была придумана гипотеза, существует такая тесная связь, что всякая гипотеза, объясняющая одни факты, должна тем самым объяснять и другие; таким образом, проверяемые факты являются только внешне новыми.
Не то мы имеем, когда опыт открывает совпадение, которое можно было предвидеть и которое произошло не случайно и особенно, если дело идет о численном совпадении. Действительно, совпадения такого рода мы имеем среди явившихся в течение последнего времени подтверждений атомистических идей.
Кинетическая теория газов получила, образно выражаясь, неожиданные подкрепления. Новые идеи точно укладываются в нее; с одной стороны, это теория растворов, с другой — электронная теория металлов. Молекулы растворенного вещества, так же как и свободные электроны, которым металлы обязаны своей электрической проводимостью, ведут себя как газовые молекулы в содержащих их оболочках. Параллелизм полный и может быть продолжен до численных совпадений. Этим сомнительное обращается в возможное; каждая из этих трех теорий, если бы она была изолированной, казалась бы нам только остроумной гипотезой, которую можно заменить другими объяснениями, столь же правдоподобными; но так как в каждом из этих случаев понадобились различные объяснения, то отмеченные совпадения нельзя было приписывать лишь случаю; это является неприемлемым, так как три кинетические теории делают эти совпадения необходимыми. Далее теория растворов заставляет нас естественным образом перейти к теории броуновского движения, где невозможно рассматривать тепловое движение как мысленную фикцию, потому что его непосредственно видно в микроскоп.
Блестящие определения числа атомов, произведенные Перреном, дополнили этот триумф атомизма. Многочисленные согласия между результатами, полученными совершенно различными способами, упрочивают наше убеждение. Еще очень недавно считали себя счастливыми, видя, что найденные числа имеют одинаковое число цифр; тогда даже не требовали, чтобы первая значащая цифра была та же; сейчас эта первая цифра найдена, и что особенно замечательно, так это то, что пользовались самыми разнообразными свойствами атома. В способах, вытекающих из броуновского движения, или в тех, которые связаны с законом излучения, считают не непосредственно атомы, а степени свободы; там, где говорят о голубом цвете неба, уже не механические свойства атома идут в расчет, а рассматривают атомы как причину оптической дискретности; наконец, когда пользуются радием, считают испускаемые частицы. Если бы в этом пункте были разногласия, то согласовать их было бы очень трудно, но, к счастью, их не было.
Атом химика — сейчас реальность, но это не значит, что мы близко подошли к первичному элементу вещей. Когда Демокрит предложил атомы, он считал их абсолютно неделимыми, помимо которых ничего не остается искать. Именно это и должно значить само слово по-гречески, и именно для этой цели оно и было придумано; за атомом не должно быть больше тайны. Следовательно, атом химика не дал бы ему полного удовлетворения, так как этот атом вовсе не является неделимым, он не является истинным элементом, он не свободен от тайны, этот атом — целый мир. Демокрит сказал бы, что после всех перенесенных для его отыскания трудов мы не продвинулись дальше, чем в самом начале; эти философы никогда не бывают довольны.
Ведь, и в этом заключается второе наше впечатление, всякое новое открытие физики выявляет нам новое усложнение атома. Прежде всего, тела, которые считали простыми и которые во многих отношениях вели себя совсем как простые тела, способны разлагаться на еще более простые тела. Атом распадается на более мелкие атомы. То, что называют радиоактивностью, есть не что иное, как непрерывный распад атома. Иногда, говоря о преобразовании элементов, выражаются не вполне точно, так как в действительности элемент не превращается в другой, а разлагается на несколько других. Продукты этого разложения все еще остаются химическими атомами, подобными во многих отношениях тем, которые, разрушаясь, их произвели. Таким образом, явление могло бы быть выражено, подобно самой обычной реакции, химическим уравнением, которое приняли бы без особых страданий самые консервативные химики.
Но это не все, в атомах мы находим многое другое: прежде всего мы в них находим электроны. Каждый атом в таком случае представляется нам в некотором роде Солнечной системой, где маленькие отрицательные электроны, играющие роль планет, движутся вокруг положительного электрона, играющего роль центрального Солнца. Взаимное притяжение этих зарядов с противоположными знаками является связью системы, образующей из нее одно целое; именно она управляет периодами планет, а эти периоды определяют длину волны света, излучаемого атомом. Индукции конвекционных токов, вызванных движением этих электронов, атом, который из них образован, обязан своей видимой инерцией, которую мы называем его массой. Кроме этих связанных электронов, существуют и свободные электроны, такие, которые подчиняются тем же законам, что и газовые молекулы, и которые делают металлы проводниками. Последние сравнимы с кометами, которые движутся от одной звездной системы к другой и которые производят свободный обмен энергией между этими удаленными системами.
Но мы все еще не у предела; после электронов или атомов электричества пришел магнетон или атом магнетизма, который входит сейчас двумя различными путями: через изучение магнитных тел и через изучение спектров простых тел. Мне не нужно напоминать вам здесь превосходного сообщения Вейса и отношения соизмеримости, которую столь неожиданным образом выявили его опыты. Там также существуют численные соотношения, которые нельзя приписать случаю, и объяснение которых следует искать.
В то же время нужно объяснить столь странные законы распределения линий в спектре. Из работ Бальмера, Рунге, Кейзера, Ридберга следует, что эти линии распределяются в серии и в каждой серии подчиняются простым законам. Ближайшей мыслью является сопоставить эти законы с гармоническими. Так же, как дрожащая струна имеет бесконечное число степеней свободы, что позволяет ей дать бесконечное число звуков, частоты которых являются кратными основной частоты; так же, как звучащее тело сложной формы дает гармоники, законы которых аналогичны законам предыдущих, но, однако, менее простые; так же, как резонатор Герца способен на бесконечное число различных периодов, не может ли и атом по идентичным причинам дать бесконечное число различных излучений? Вы знаете, что эта столь простая мысль потерпела банкротство потому, что по законам спектроскопии частота, а не ее квадрат, выражается так просто, потому что частота не становится бесконечной для гармоник бесконечно высокого порядка. Эта мысль должна быть изменена или отброшена. До сих пор она не поддавалась никаким ухищрениям и отказывалась согласоваться; это-то и заставило Рида ее отбросить. Он представляет себе колеблющийся атом образованным из вращающегося электрона и из множества магнетонов, расположенных один за другим. В таком случае уже не взаимное электростатическое притяжение электронов управляет длинами волн, а магнитное поле, создаваемое этими магнетонами.
Эту мысль принять несколько трудно, в ней есть, не знаю, что-то искусственное; но все-таки приходится ее принять хотя бы временно, потому что пока не найдено ничего другого, а искали хорошо. Почему атомы водорода могут в спектре давать несколько линий? Это происходит не потому, что каждый из них мог бы давать все линии водородного спектра и что он действительно дает ту или другую линию в зависимости от начальных условий движения, а потому, что существуют атомы водорода нескольких сортов, которые различаются числом соответствующих им магнетонов, и потому, что каждый из этих сортов атомов дает различные линии. Спрашивается, могут ли эти атомы преобразовываться один в другой и как? Как может атом терять магнетоны (а это как будто происходит, когда переходят от одного аллотропического вида железа к другому)? Может ли магнетон выйти из атома, или же может ли часть магнетонов покинуть строй, чтобы расположиться неправильно?